CALCULATION BOOK

REPORT OF MYSTAGE STRESS ANALYSIS

Sept. 23, 2022

1) Takeaways

In this report loads on MyStage, a portable stage with 5 legs, 465 mm height and 1219mm x 1219mm top surface have been modeled and studied. Result show that:

- Required load by code is 50 psf.

- Maximum stress that is caused by this load is 55.4 MPa (8.04 ksi) which is considerably less than the material yield stress of 241 MPa (34.95 ksi). Thus, the stage can bear this load with a great safety margin.

- Applying higher loads to the model shows that deformation and fracture does not occur until the overall distributed vertical force reaches 3,479 lbs (15,475 N).

- Based on this study, the stage is properly designed and can handle the intended loads.

2) Material and Mechanical Properties:

AL6005-T5: Fy=35 Ksi ; Fy=241 Mpa poisson coefficient: 0.333 Modulus of Elasticity: 69.0 GP

🕼 🦻 B 221 – 05

		T/	ABLE 2 Continu	ed			
Temper	Specified Section or Wall Thickness, in.	Area, in. ²	Tensile Str	Tensile Strength, ksi		Yield Strength (0.2 % offset), ksi	
			min	max	min	max	
0	al	a	14.0	19.0	5.0		25
H112	al	al	14.0		5.0		25
			Alloy Alclad 3003 ⁴				
0	al	al	13.0	18.0	4.5		25
H112	al	al	13.0		4.5*		25
			Alloy 3004 ^E				
0	al	al	23.0	29.0	8.5		
			Alloy 3102				
H112 ^L	0.028-0.050	al	11.0	18.0	4.0		25
			Alloy 5052				
0	al	al	25.0	35.0	10.0		
			Alloy 5083 ^E				
0	up through 5.000 ^M	up through 32	39.0	51.0	16.0		14
H111	up through 5.000 ^M	up through 32	40.0		24.0		12
H112	up through 5.000 ^M	up through 32	39.0		16.0		12
			Alloy 5086 ^E				
0	up through 5.000 ^M	up through 32	35.0	46.0	14.0		14
H111	up through 5.000 ^M	up through 32	36.0		21.0		12
8112	up inrough 5.000	up mough az	35.0		14.0		12
-		-	Alloy 5154				
0		a	30.0	41.0	11.0		
1112	di	di	30.0		11.0		
			Alloy 5454*				
0	up through 5.000 ^M	up through 32	31.0	41.0	12.0		14
H111	up through 5.000 ^M	up through 32 up through 32	33.0		19.0		12
	ap mongh store	op moogn or	Alloy 5456 ^E		12.0		14
0	up through 5 000 ^M	up through 32	41.0	53.0	10.0		
H111	up through 5.000 ^M	up through 32	42.0	53.0	26.0		12
H112	up through 5.000 ^M	up through 32	41.0		19.0		12
			Alloy 6005				
T1	up through 0.500	al	25.0		15.0		16
T5	up through 0.124	al	38.0		35.0		8
	0.125-1.000	al	38.0		35.0		10

ASTM-B221: Extruded Aluminum Alloy Tubes for General Purpose Applications

3) Loading:

Gravity Load =50 psf Lateral load on floor=10*3*/(4*4)=1.875 psf (Sec. 4.14 ASCE 7-22)

Note1: Wind, temperature, fatigue, etc. loads are not considered. Note2: Assumed all joints on the ground are fixed.

4) Geometry:

As per provided drawings by client. The 3D model of portable stage in SAP2000 software is shown in Figure-1.

Figure-1: SAP2000 3D model of Portable Stage.

5) Allowable axial & shear stresses:

Safety factor: for axial stress: 2.20 (ASD) for shear stress 2.64 (ASD) Note: Please see table1.

Axial Allowable Stress: Ft=Fy/F.S.=241/2.2=109.50 Mpa

Shear Allowable Stress: Fv=Fy/F.S.=241/2.64=91.30 Mpa

Component	Failure mode	Buildings and similar type structures	Bridges and similar type structures				
Tension	Yielding	1.95	2.20				
	Ultimate strength	1.65	1.85				
Columns	Yielding (short col.)	1.65	1.85				
	Buckling	1.95	2.20				
Beams	Tensile yielding	1.65	1.85				
	Tensile ultimate	1.95	2.20				
	Compressive yielding	1.65	1.85				
	Lateral buckling	1.65	1.85				
Thin plates in	Ultimate in columns	1.95	2.20				
compression	Ultimate in beams	1.65	1.85				
Stiffened flat	Shear yield	1.65	1.85				
webs in shear	Shear buckling	1.20	1.35				
Mechanically	Bearing yield	1.65	1.85				
fastened	Bearing ultimate	2.34	2.64				
joints	Shear str./rivets, bolts	2.34	2.64				
Welded joints	Shear str./fillet welds	2.34	2.64				
	Tensile str./butt welds	1.95	2.20				
	Tensile yield/ butt welds	1.65	1.85				
Data from The Aluminum Association, <i>Structural Design Manual</i> , 1994.							

TABLE 8.3 Factors of Safety for Allowable Stress Design

Table-1: Data from the Aluminum Association, Structural Design Manual.

6) Load pattern

Load pattern of the spatial distribution of forces, which act on the portable stage in table-2.

TABLE: Load Pattern Definitions						
Load Pat	SelfWtMult					
Text	Text	Unitless				
DEAD	DEAD	1				
LIVE	LIVE	0				
LAT-X	OTHER	0				
LAT-Y	OTHER	0				

Table-2: Load Pattern Definitions

7) Load case definition

Please see the load case definition that is a combination of different types of loads. During the analysis, loads or forces are applied to the structure, and the resulting deflections are measured. These loads and forces can be combined to create one or several load cases.

TABLE: Load Case Definitions						
Case	Туре	InitialCond	ModalCase	BaseCase	DesTypeOpt	DesignType

Text	Text	Text	Text	Text	Text	Text
DEAD	LinStatic	Zero			Prog Det	DEAD
LIVE	LinStatic	Zero			Prog Det	LIVE
LAT-X	LinStatic	Zero			Prog Det	OTHER
LAT-Y	LinStatic	Zero			Prog Det	OTHER
BUCKLING	LinBuckling	Zero			Prog Det	DEAD

Table-3: Load Case Definitions

8) Load Combination

Please see load combination that results when more than one load type acts on the structure in table-4. Codes usually specify a variety of load combinations together with load factors (weightings) for each load type in order to ensure the safety of the structure under different maximum expected loading scenarios.

TABLE: Combination Definitions							
ComboName	ComboType	AutoDesign	CaseType	CaseName	ScaleFactor		
Text	Text	Yes/No	Text	Text	Unitless		
COMB1		No	Linear Static	DEAD	1		
COMB1	Linear Add		Linear Static	LIVE	1		
COMB1			Linear Static	LAT-X	1		
COMB2		No	Linear Static	DEAD	1		
COMB2	Linear Add		Linear Static	LIVE	1		
COMB2			Linear Static	LAT-X	-1		
COMB3		No	Linear Static	DEAD	1		
COMB3	Linear Add		Linear Static	LIVE	1		
COMB3			Linear Static	LAT-Y	1		
COMB4	Linear Add	No	Linear Static	DEAD	1		

COMB4			Linear Static	LIVE	1
COMB4			Linear Static	LAT-Y	-1
ENVELOPE		No	Response Combo	COMB1	1
ENVELOPE	Freedow		Response Combo	COMB2	1
ENVELOPE	Envelope		Response Combo	COMB3	1
ENVELOPE			Response Combo	COMB4	1

Table-4: Load combination

9) Stress Analysis Result

Please see the result of stress analysis in SAP200 software in pictures below:

Figure-2: Axial stress analysis on axis S11- abs Max (Envelope-Max)

9/15/22 20:49:50

SAP2000 v14.2.2 - File:MODEL-12 - Stress S11 Diagram - Abs Max (ENVELOPE - Min) - N, mm, C Units

Figure-3: Axial stress analysis on axis S11- abs Max (Envelope-Min)

9/15/22 20:50:10

Figure-4: Axial stress analysis on axis S22- abs Max (Envelope-Max)

SAP2000 v14.2.2 - File:MODEL-12 - Stress S22 Diagram - Abs Max (ENVELOPE - Min) - N, mm, C Units

Figure-5: Axial stress analysis on axis S22- abs Max (Envelope-Min)

SAP2000 v14.2.2 - File:MODEL-12 - Stress S22 Diagram - Abs Max (ENVELOPE - Max) - N, mm, C Units

SAP2000 v14.2.2 - File:MODEL-12 - Stress S11 Diagram - Abs Max (ENVELOPE - Max) - N, mm, C Units

Figure-7: Axial stress analysis on axis S11- abs Max (Envelope-Max) Top View

SAP2000 v14.2.2 - File:MODEL-12 - Stress S22 Diagram - Abs Max (ENVELOPE - Max) - N, mm, C Units

Figure-8: Axial stress analysis on axis S22- abs Max (Envelope-Max)

Figure-9: Shear stress analysis on axis S12- abs Max (Envelope-Max)

Figure-10: Shear stress analysis on axis S12- abs Max (Envelope-Min)

10) Buckling Analysis result

Please see the buckling analysis result that is generally used to estimate the critical buckling (bifurcation) load of structures in figure-11 and 12.

SAP2000 v14.2.2 - File:MODEL-12 - Deformed Shape (BUCKLING) - Mode 1 - Factor -17.69792 - N, mm, C Units

Figure-11: Deformed shape (Buckling) - Mode 1

SAP2000 v14.2.2 - File:MODEL-12 - Deformed Shape (BUCKLING) - Mode 2 - Factor 19.16588 - N, mm, C Units

Figure-12: Deformed shape (Buckling) - Mode 2

11) Maximum Deformation

Please see the maximum deformation of portable stage in figure-13.

Figure-13: Maximum Deformation

12) Results:

- The structure is modeled and analyzed in SAP2000 software based on the geometry and material provided by the client.

- In the analysis of the structure, a load of 50 PSF is applied in the form of gravity and 1.875 PSF in a horizontal way on the surface.

- In the analysis of the structure, the effect of wind loads, earthquakes, temperature, and fatigue are not taken into account.

- For the applied loads, the maximum stresses and maximum displacements of the structure were compared with the amount of allowable stress and displacement (L/360). The results show that the calculated stresses and displacement are lower than allowable amounts, and the MyStage is suitable for the intended use.

- For more certainty, it is suggested to test the structure. For this purpose, a load of 100 psf on the surface can be gradually applied to the structure.

- Due to the fact that the effects of fatigue on the structure have not been modeled, it is necessary to explain to the users in the manual that this product is not suitable for long-term periodic loads. (This and the above case should be discussed with the manufacturer.)

- Based on the analysis, the maximum stress for the load of 50 psf on this portable stage is about 55.4 Mpa.

-55.394271 Area Object 1578 Area Element 1578		X Stress Diagram	1
	-55.394271-	Area Object 1578 Area Element 1578	
value -55.394271 N/mm2 Abs Max Value Showing Toggle Output Type	+	value -55.394271 N/mm2 Abs Max Value Showing Toggle Output Type	

Figure-14: Maximum Stress

Considering that the analysis is linear, the final load can be determined as follows: Fy=241 Mpa=34.95 ksi

S_{max}=55.4 Mpa=8.04 ksi P_{fracture} =Fy/Smax*50*1219*1219/(25.4*25.4*12*12)=**3479 lbs**

- Because the material used may have a higher yield and ultimate stress than the standard (In the standard, there is the minimum yield and final stress of the material), practically, we may have more load bearing capacity.

- Another point is the redistribution of loads from the beginning of the first yield point to collapse. This case is also not analyzed in the analysis. In other words, when deformation due to loads locally starts on a member, the entire structure might still be capable of tolerating higher loads. Even though higher capacities are expected, these higher loads that happen after deformation are not studied in this report.