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There is increasing recognition that the optical and antioxidant properties of the xanthophyll carotenoids
lutein and zeaxanthin play an important role in maintaining the health and function of the human mac-
ula. In this review article, we assess the value of non-invasive quantification of macular pigment levels
and distributions to identify individuals potentially at risk for visual disability or catastrophic vision loss
from age-related macular degeneration, and we consider the strengths and weaknesses of the diverse
measurement methods currently available.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction AMD’s advanced stage, which is known as geographic atrophy, is
The prevalence of age-related eye disease is increasing steadily
due to an aging population. It is predicted that cases of early age-
related macular degeneration (AMD) will increase approximately
96% from 9.1 million in 2010 to 17.8 million in 2050 (Rein et al.,
2009). In the United States, AMD is the estimated cause of 54.4%
of visual impairment and 22.9% of blindness in the Caucasian pop-
ulation. Among Hispanic and African–Americans, these percent-
ages are smaller but significant (Congdon et al., 2004). Its
irreversible, devastating impact upon vision and the threat it poses
to the quality of everyday life has prompted intense research ef-
forts to find ways to either prevent or delay its progression.

Although no current FDA-approved AMD treatment is likely to
completely restore vision lost to macular degeneration, some
nutrients and drugs may be able to preserve or improve remaining
vision. For exudative (wet) AMD, treatments are aimed at stopping
abnormal blood vessel growth primarily by way of injecting com-
pounds directly into the vitreous that inhibit vascular endothelial
growth factor (VEGF). Approximately one-third of wet AMD pa-
tients can expect significant improvement of vision while another
one-third can expect stabilization of their vision. The remainder of
patients, however, will continue to lose vision. Treatment of dry
ll rights reserved.
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less amenable to treatment, and no interventions beyond antioxi-
dant vitamins and minerals have had any demonstrable effect.
Thus, there is still considerable interest in interventions that can
be used at AMD’s earliest stages or before it manifests at all in or-
der to prevent progression to its advanced stages.

Given the enormous human and economic impact, it is impera-
tive to consider proven means of reducing risk of AMD in the aging
population. Within the last two decades, there has been growing
recognition that dietary constituents can have an important role
in maintaining eye health. Increasing the consumption of these
nutrients may be a safe, easy, and effective measure to improve vi-
sual function and to possibly decrease the risk of some eye diseases
such as AMD. Two such nutrients, lutein and zeaxanthin, were
identified in the macula in 1985, but their function in the eye is
just now being elucidated (Landrum & Bone, 2001; Schalch,
1999; Snodderly, 1995; Wald, 1945). This review article provides
an overview of how and why these dietary constituents have a
positive impact on macular health with particular emphasis on
the potential value of measurement of their concentrations and
distributions as early predictors of AMD risk.
2. Macular pigment

Lutein and zeaxanthin are structural isomers that belong to a
class of molecules called carotenoids. Carotenoids are pigments
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synthesized by plants for coloration and absorption of light energy.
They are divided into two classes: xanthophylls and carotenes. Lu-
tein and zeaxanthin are xanthophylls biochemically distinct from
other carotenoids due to the presence of hydroxyl groups located
at each end of these molecules. This functionality allows xantho-
phylls to be oriented in lipid membranes exposed to aqueous envi-
ronments in a unique and possibly protective way (Gruszecki &
Sielewiesiuk, 1990). Of the 600+ carotenoids found in nature, forty
to fifty are consumed in the typical diet, and only 14 have been de-
tected in serum (Khachik, Beecher, Goli, & Lusby, 1992; Khachik,
Beecher, Goli, Lusby, & Smith, 1992). Of these 14, only lutein and
zeaxanthin and their metabolites (Fig. 1) are located in the macula
where they are found at the highest concentrations anywhere in
the human body, suggesting an important functional role for these
molecules in the eye (Handelman, Dratz, Reay, & van Kuijk, 1988).

The characteristic yellow coloration of the macula is due to the
presence of macular pigment comprised of lutein and zeaxanthin
(Beatty, Boulton, Henson, Koh, & Murray, 1999; Beatty, Nolan, Kav-
anagh, & O’Donovan, 2004). Macular pigment is deposited prefer-
entially in the fovea in the Henle fiber layer which consists of the
foveal cones’ axons, and in the parafovea, macular pigment is also
located in the inner plexiform layers of the retina (Snodderly, Aur-
an, & Delori, 1984; Trieschmann et al., 2008). The concentration of
macular pigment peaks in the center of the macula, the foveola,
and decreases 100-fold within a few millimeters of eccentricity.
Lutein is more prevalent in the peripheral retina as the ratio of lu-
tein to zeaxanthin changes from approximately 1:2.4 in the central
retina to 2:1 in the peripheral region (Bone, Landrum, Fernandez, &
Tarsis, 1988; Bone et al., 1997). Variation with eccentricity of this
ratio corresponds to the rod-cone ratio, suggesting a preferential
accumulation in these structures, although immunohistochemical
localization of the lutein and zeaxanthin binding proteins in pri-
mate retina show equal staining of both rods and cones (Bhosale
et al., 2009; Bone et al., 1988; Handelman, Snodderly, Krinsky,
Russett, & Adler, 1991). The only other carotenoid present in sub-
stantial amounts in the macula is meso-zeaxanthin (Bone, Lan-
drum, Hime, Cains, & Zamor, 1993; Landrum & Bone, 2001).
Fig. 1. Xanthophyll carotenoids found in the human retina and macula. The
asterisks denote metabolites of dietary lutein and zeaxanthin.
Meso-zeaxanthin is a stereoisomer of zeaxanthin that is not gener-
ally present in the diet nor detected in the serum (Bone et al.,
1997). It has been demonstrated recently in monkeys and Japanese
quails that meso-zeaxanthin is a metabolic product of lutein (Bho-
sale, Serban, Zhao, & Bernstein, 2007; Johnson, Neuringer, Russell,
Schalch, & Snodderly, 2005). Interestingly, in infants under the
age of two, the ratio of lutein to zeaxanthin in the central macula
is higher than in adults, suggesting that the lutein distribution is
altered in order to adapt to retinal maturation and environmental
exposure (Bone et al., 1988).

Macular pigment attenuates short wavelengths of visible light,
as it maximally absorbs at a wavelength of 460 nm (Fig. 2) (Snod-
derly, Auran, & Delori, 1984; Snodderly, Brown, Delori, & Auran,
1984); these blue wavelengths have been shown to be more dan-
gerous than longer wavelengths of visible light since they are more
energetic and seem to be more efficient at generating reactive oxy-
gen species from endogenous photosensitizers such as lipofuscin.
Additionally, lutein and zeaxanthin are versatile antioxidants
which neutralize reactive oxygen species, in both the low pO2

inner retina and the high pO2 environment of the photoreceptor-
RPE complex. This oxygen-rich outer retina in particular is a highly
vulnerable region for oxidative damage due to high concentrations
of polyunsaturated fatty acids that are susceptible to photo-oxida-
tion and exposure to high-energy blue light (De La Paz & Anderson,
1992). Although lutein and zeaxanthin levels are rather low in the
photoreceptor outer segments, a prime target for oxidative damage
in the retina due to its high levels of polyunsaturated acids, their
binding proteins have recently been localized to the mitochondrial
rich ellipsoid region of the inner segments, another region of high
oxidative stress within the cell (Bhosale et al., 2004; Bhosale et al.,
2009; Yang, Basinger, Gross, & Wu, 2003).
3. Lutein and zeaxanthin consumption correlates with
increased serum levels

Lutein and zeaxanthin, like all other carotenoids, are not syn-
thesized in the body. Thus, lutein and zeaxanthin must be obtained
solely from the diet where the richest sources are dark green, leafy
vegetables such as spinach and kale and various orange and yellow
fruits and vegetables (Mangels, Holden, Beecher, Forman, & Lanza,
1993). Egg yolks provide a highly bioavailable source of lutein pre-
sumably due to the associated fat content, even though the lutein
concentration is relatively low (Handelman, Nightingale, Lichten-
stein, Schaefer, & Blumberg, 1999). Supplements containing lutein
Fig. 2. Absorption spectra of lutein (red) and zeaxanthin (blue) in olive oil. A
mixture of lutein plus zeaxanthin (dashed black line) closely approximates the
absorption spectrum of the macular pigment in the living human eye.
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are widely available, while zeaxanthin supplements are less com-
mon. The most recent studies evaluating the impact of lutein
and/or zeaxanthin supplementation upon eye health have utilized
10 mg or more per day (Bahrami, Melia, & Dagnelie, 2006; Chew,
2007; Khachik et al., 2006; Kvansakul et al., 2006; Neelam et al.,
2008; Parisi et al., 2008; Richer, Devenport, & Lang, 2007; Richer
et al., 2004; Rodriguez-Carmona et al., 2006; Rosenthal et al.,
2006; Schalch et al., 2007; Stringham & Hammond, 2008; van het
Hof et al., 1999; Wenzel et al., 2007). This dosage is well below
the 2 mg/kg acceptable daily intake (ADI) established by the Joint
FAO/WHO Expert Committee on Food Additives (JECFA). In addi-
tion, there are no reported toxic effects of long-term exposure to
lutein and zeaxanthin from dietary sources.

Following ingestion and absorption, lutein and zeaxanthin are
deposited in a number of tissues including the eyes, skin, breast,
cervix, and brain. It is likely that an active transport mechanism ex-
ists for macular deposition of lutein and zeaxanthin as levels are
�10,000-fold higher in the macula as compared to the serum. Spe-
cific xanthophyll-binding proteins recently identified may play a
role in this transport mechanism (Bernstein, Balashov, Tsong, &
Rando, 1997; Bhosale et al., 2004; Bhosale et al., 2009; Matthews,
Ross, Lall, & Gill, 2006). Serum and ocular concentrations of lutein
and zeaxanthin have been shown to increase following increased
intake of foods rich in these carotenoids (Hammond, Johnson,
et al., 1997; Johnson et al., 2000; Wenzel, Gerweck, et al., 2006)
or ingestion of supplements (Bone, Landrum, Dixon, Chen, & Llere-
na, 2000; Bone, Landrum, Guerra, & Ruiz, 2003; Landrum et al.,
1997; Rosenthal et al., 2006). It is estimated that the average daily
intake of lutein + zeaxanthin in the US is �2 mg, which is far below
that shown to reduce the risk of age-related eye disease (Centers
for Disease Control and Prevention). Based on the information at
hand, increased consumption of foods or supplements containing
lutein and zeaxanthin may benefit populations where consump-
tion is generally low in order to reach levels associated with bene-
fits to eye health.

4. Increased serum lutein and zeaxanthin levels are associated
with decreased risk for AMD

The first indication that lutein and zeaxanthin impacted AMD
risk was an epidemiological study from the Eye Disease Case-Con-
trol (EDCC) Study Group published in 1993, and a follow-up study
by Seddon and colleagues on a subset of EDCC patients published
in 1994 (Seddon et al., 1994; The Eye Disease Case-Control Study
Group, 1993). Results indicated that individuals with the highest
blood levels and highest dietary intake of lutein and zeaxanthin
had a 43% risk reduction for AMD (Seddon et al., 1994). Since then,
there have been numerous observational studies evaluating the
relationship between dietary lutein intake, serum lutein levels,
and AMD risk that have generally been consistent with these initial
findings (Delcourt, Carriere, Delage, Barberger-Gateau, & Schalch,
2006; Gale, Hall, Phillips, & Martyn, 2003; Moeller et al., 2006;
Snellen, Verbeek, Van Den Hoogen, Cruysberg, & Hoyng, 2002;
Tan et al., 2008; The Eye Disease Case-Control Study Group,
1993; Vu, Robman, McCarty, Taylor, & Hodge, 2006). These epide-
miological studies in aggregate provide ample evidence from an
observational perspective to conclude that consumption of lutein
and zeaxanthin from food is associated with reduced risk for
AMD; however, controlled intervention studies will be necessary
to establish a causal relationship.

Two prospective trials are currently evaluating the progression
of AMD following supplementation with lutein and zeaxanthin in a
large population diagnosed with early AMD: CARMA and AREDS2.
The Carotenoids in Age-Related Maculopathy (CARMA) study is
investigating the efficacy of lutein and zeaxanthin supplementa-
tion (6 mg and 0.3 mg, respectively) for 36 months upon distance
visual acuity, contrast sensitivity, photopic interferometric acuity,
and shape discrimination in 433 individuals with early AMD. Sec-
ondary aims of the trial are to assess progression of early AMD,
evaluate macular pigment optical density, and determine serum
lutein and zeaxanthin concentrations.

The Age-Related Eye Disease Study 2 (AREDS2) adds the carote-
noids lutein (10 mg per day) and zeaxanthin (2 mg per day), alone
or in combination with the omega-3 fatty acids, DHA (350 mg per
day) and EPA (650 mg per day) to the original AREDS supplement
formulation to assess their influence on the progression to ad-
vanced AMD in individuals at high risk for the disease with bilat-
eral large soft drusen and/or advanced AMD in one eye. The
decision to add lutein and zeaxanthin at a typical dietary ratio of
5:1 to the original AREDS supplement formula was in part due to
analysis of the dietary intake of lutein and zeaxanthin in the AREDS
participants, which showed that those individuals with the highest
intake had the lowest risk for AMD (AREDS Report No. 22, 2007). In
June 2008, 80 participating US centers completed recruitment of
over 4000 AMD patients for the study with each patient slated to
receive his or her assigned treatment in a randomized, placebo-
controlled, double-blind manner for 5 years. In addition to evaluat-
ing the rate of AMD progression, other outcomes simultaneously
evaluated include the effects of supplementation on cognitive
function, cataract development, cardiovascular disease, vision loss,
and visual function.

The AREDS2 study is designed to provide definitive evidence of
the efficacy of lutein and zeaxanthin supplementation in the pre-
vention of progression to advanced AMD in high risk eyes (bilateral
large drusen, extrafoveal geographic atrophy, and/or advanced
AMD in the fellow eye), but to demonstrate efficacy in the preven-
tion of AMD in lower risk eyes (i.e. young people with a family his-
tory of AMD) will be much more difficult because studies would
potentially have to be decades long and involve tens of thousands
of subjects. Still, in clinical practice, these are the people most
likely to request guidance on whether they are consuming ade-
quate levels of lutein and zeaxanthin in the diet and whether or
not they might benefit from supplementation. In order to address
this issue, the lead author (PSB) convened a panel of fellow experts
with extensive experience in carotenoid physiology and/or macu-
lar pigment measurement in normal and AMD eyes (the co-
authors) to come to a consensus as to the value of non-invasive
macular pigment measurement as a screening tool for AMD risk
based on a review of the literature and their clinical experience.

5. Macular pigment optical density (MPOD)

The epidemiology studies discussed above generally used ser-
um carotenoid levels or dietary surveys to group patients for statis-
tical analyzes, but there is ample evidence that these methods are,
at best, weak indicators of actual tissue levels in the macula. Thus,
there is considerable interest in incorporating various non-invasive
techniques to measure the amount and corresponding spatial dis-
tribution of the macular carotenoids to enhance research and clin-
ical care for populations at risk for visual loss from AMD.
Traditional laboratory methods used to measure lutein and zea-
xanthin, namely high performance liquid chromatography (HPLC),
cannot be used on living eyes, so a surrogate optical indicator of
xanthophyll levels in the eye is often employed, macular pigment
optical density (MPOD).

MPOD is a measurement of the attenuation of blue light by
macular pigment and is linearly related to the amount (concentra-
tion � pathlength � area) of lutein and zeaxanthin in the macula if
integrated over the region where macular pigment is deposited.
Optical density levels, or density units (d.u.) typically encountered
in the center of the human macula vary between 0 and 1 (Bone &
Landrum, 1992; Snodderly, Handelman, & Adler, 1991). Since lu-
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tein and zeaxanthin have been associated epidemiologically with a
protective role against age-related macular degeneration and cata-
ract, it is reasonable to infer that central MPOD levels could be an
indicator of AMD risk (Delcourt et al., 2006; Gale et al., 2003; Moel-
ler et al., 2006; Seddon et al., 1994; Snellen et al., 2002; Tan et al.,
2008; The Eye Disease Case-Control Study Group, 1993; Vu et al.,
2006). In fact, some studies have shown that healthy individuals
have higher central MPOD levels than those afflicted with AMD
(Beatty et al., 2001; Bernstein et al., 2002; Obana et al., 2008).

A recent epidemiological study in 828 healthy Irish subjects
found a positive and significant relationship between dietary in-
take of lutein and zeaxanthin, serum concentrations of the respec-
tive carotenoids, and central MPOD (Nolan, Stack, O’Connell, &
Beatty, 2007). A statistically significant inverse relationship be-
tween central MPOD levels and risk factors for AMD including
age, tobacco use, and family history of age-related maculopathy
(ARM) was also demonstrated in this group suggesting that in-
creased risk of ARM may be attributable in part to a relative lack
of macular pigment (Nolan, Stack, O’Donovan, Loane, & Beatty,
2007). The optical density at 0.5-degrees eccentricity in these sub-
jects ranged from 0 to 0.87 with a mean value of 0.30 (±0.17) which
is consistent with previous studies showing wide variation in
MPOD levels among individuals (Bone, Landrum, & Cains, 1992;
Bone & Sparrock, 1971; Hammond & Fuld, 1992; Hammond, Fuld,
& Curran-Celentano, 1995; Pease, Adams, & Nuccio, 1987). It
should be noted, however, some studies have indicated that mac-
ular pigment appears to be reduced in obese subjects, subjects
with a higher body fat percentage, and females (Hammond, Ciulla,
& Snodderly, 2002; Nolan et al., 2004; Richer et al., 2004). This im-
plies that one or more of these attributes may reduce the visual
and ocular effects of lutein and/or zeaxanthin supplementation. It
also argues for prescriptive carotenoid dosing, rather than single
dose recommendations for all patients.

6. Macular pigment distributions

Mapping of the spatial distribution of macular pigment defi-
nitely provides a more complete and accurate representation of
macular pigment levels and may enable the correlation of distribu-
tion with developing pathology. Determination of the spatial dis-
tribution of MPOD is especially important, not only because
some distributions may be associated with particular eye diseases,
but because quantitation of central MPOD levels alone may under-
estimate or overestimate the potential role of macular pigment in
protection against AMD. This was confirmed by Robson et al. in
2003 when it was reported that central MPOD levels are only
poorly correlated with the total amount of macular pigment pres-
ent, and they concluded that the total amount of macular pigment
cannot be reliably predicted from only central attenuation (Robson
et al., 2003). Also, as discussed below, most MPOD methods mea-
sure the density at the center of the retina relative to some eccen-
tric location where macular pigment concentrations are assumed
to be negligible. If an individual’s macular pigment is broadly dis-
tributed over many degrees, if it has an irregular distribution, or if
supplementation increases lutein or zeaxanthin concentrations in
the peripheral retina substantially, this assumption may not hold
true (Bhosale, Zhao & Bernstein, 2007).

In 1997, Hammond and colleagues described macular pigment
as having a central peak that on average, decreases exponentially
to undetectable levels at 6–8� eccentricity as determined by het-
erochromatic flicker photometry (HFP) (Hammond, Wooten, &
Snodderly, 1997), and more recent HFP studies have indicated
secondary shoulders on the exponential decay may be detectable
in some individuals (Kirby et al., 2009). The shape of the spatial
distribution of macular pigment was thought to be accounted for,
in part, by the distribution of the cone photoreceptors which de-
creases rapidly from the center of the fovea outward or by foveal
architecture, particularly foveal width (Elsner, Burns, Beausen-
court, & Weiter, 1998; Kirby et al., 2009). Likewise, Robson et al.
showed a variety of macular pigment (MP) distribution patterns
using motion photometry (Robson et al., 2003). Higher resolution
optical imaging techniques enable not only refined local measure-
ments of MPOD levels but can at once display topographical varia-
tions in macular pigment as a three-dimensional image of MPOD
levels which can be integrated to calculate total macular xantho-
phyll content (Berendschot & van Norren, 2006; Delori, Goger, Keil-
hauer, Salvetti, & Staurenghi, 2006; Elsner et al., 1998; Gellermann
et al., 2002; Robson et al., 2003; Trieschmann et al., 2003).

Two recent studies in normal subjects using confocal and non-
confocal autofluorescence imaging (Berendschot & van Norren,
2006; Delori et al., 2006) and reflectance imaging (Berendschot &
van Norren, 2006) found that approximately half of the subjects
had a ring-like distribution superimposed on the flanks of a central
peak. The pattern of Maxwell’s spot also corresponded with the
pattern detected by autofluorescence imaging. One study (Delori
et al., 2006), but not the other, found that women were more likely
to exhibit the ring-like distribution. Furthermore, evidence was
presented that differences in macular pigment distribution may
be related to anatomical differences in the shape of the foveal
depression (Delori et al., 2006). This variability in the distributions
of the macular pigment was also observed in monkeys by Snodder-
ly, Auran, and Delori (1984). This led them to hypothesize that this
variability was related to variations of the size of the fovea and that
contributions of macular pigment in the cone axons and in the in-
ner plexiform layer of the retina could combine to produce varia-
tions in the overall macular pigment distribution.

Baseline levels and distributions of MPOD levels are being mea-
sured using two wavelength, non-mydriatic, autofluorescence
imaging (AFI) (Sharifzadeh, Bernstein, & Gellermann, 2006) in a
subset of patients enrolled in AREDS2 as part of an ancillary study
from Utah which will provide insight into the relationship between
MPOD levels and topography and AMD progression (Bernstein
et al., 2009). Preliminary data from this AREDS2 subset and from
a group of 70 age-matched healthy Utah subjects suggest that
there are five categories (A–E) of macular pigment distributions
as measured by autofluorescence imaging (Bernstein et al., 2009;
Sharifzadeh et al., 2006). Of the healthy subjects, 11% of the sub-
jects fell into category A, in which their central MPOD was very
low (less than 0.05). Twenty-two percent of subjects fell into cate-
gory B in which the macular pigment distribution was laterally ex-
tended with a slightly enhanced central region. Category C featured
a sole, sharp, central distribution observed in 28% of subjects. Cat-
egory D was characterized by a sharp, central distribution and an
additional ring around the foveal region in 17% of subjects. Finally,
category E had a relatively uniform, laterally extended distribution
of macular pigment seen in 12% of the subjects. The Utah AREDS2
subjects had similar distributions among the categories but with
higher-than-average baseline central MPOD which may have been
due to the subjects’ high rate of regular consumption of lutein and/
or zeaxanthin supplements prior to enrollment (Bernstein et al.,
2009).

Trieschmann et al. measured macular pigment in 400 subjects
by single wavelength AFI and found four separate classes of macu-
lar pigment distributions (Trieschmann et al., 2003). Reduced lev-
els of macular pigment in subjects with early AMD were observed
in this study. In addition, type 3 (only central macular pigment)
and type 4 (only paracentral macular pigment) distributions were
more often observed in subjects with early AMD.

A unique distribution of macular pigment has been associated
with macular telangiectasia (MacTel) type 2 (Charbel Issa, Berends-
chot, Staurenghi, Holz, & Scholl, 2008; Helb et al., 2008). This dis-
tribution was characterized by reduction of central MPOD within
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the macula with a surrounding ring of preserved macular pigment
at about 6� eccentricity. Interestingly, two subjects taking lutein
and zeaxanthin supplements had more pronounced macular pig-
ment in the eccentric ring suggesting xanthophyll supplementa-
tion might help accumulate macular pigment in this population
(Charbel Issa et al., 2009).

Determination of the relationship between foveal architecture
and MPOD spatial profiles in normal and diseased human subjects
may provide further insights into the relationships between MPOD
levels and pathophysiology of the human eye (Delori et al., 2006;
Snodderly et al., 1991). Several recent studies have attempted to
correlate macular pigment levels and distributions with foveal
architecture measured by optical coherence tomography (OCT)
(Kirby et al., 2009; Nolan, Stringham, Beatty, & Snodderly, 2008).
A greater understanding of MPOD topography may also elucidate
mechanisms of macular pigment deposition.
7. MPOD measurement

There are a number of techniques available to measure central
MPOD, four of which will be described here. The most commonly
used non-invasive test to quantify central macular pigment levels
are psychophysical methods: heterochromatic flicker photometry
(HFP) (Beatty, Koh, Carden, & Murray, 2000; Snodderly et al.,
2004) and, less commonly, motion photometry which is based on
normal color discrimination measured on a modified anomalo-
scope and is easier to perform as compared to HFP (Moreland, Rob-
son, & Kulikowski, 2001; Moreland, Robson, Soto-Leon, &
Kulikowski, 1998; Robson et al., 2003, 2005). HFP was originally
described in the 1970s, and its use has increased with improved
equipment. The HFP measurement procedure involves a test stim-
ulus, typically a disk or ring shape, that alternates between a wave-
length absorbed by macular carotenoids (typically blue at 460 nm)
and a wavelength that is not absorbed (typically green at 540 nm).
To the subject, this alternating stimulus appears as a flickering disk
or ring, subtending, most often, 1-degree of visual angle. The sub-
ject adjusts the intensity of blue light until the perception of flicker
is minimized or eliminated. The average intensity of the blue light
aimed at the foveal region at minimal flicker (Bfov) is recorded. The
test is then repeated with the stimulus aimed at an eccentric fixa-
tion point where it is assumed that the macular pigment optical
density is negligible (Bref). The central MPOD level is then calcu-
lated with the equation: MPOD = log (Bfov/Bref). A subject with a
high central MPOD then will require a greater blue light intensity
in the fovea to compensate for the attenuation of blue light by
the macular pigment, relative to the parafovea compared to an
individual with low MPOD. Spatial mapping of off-central MPOD
levels can be approximated in a limited manner by adjusting the
visual angle of the test stimulus. Although HFP may be a minimally
invasive measure of macular pigment levels, as it does not require
pupillary dilation and uses advantageously low light levels, it is a
psychophysical procedure, necessitating both proper training of
the subject and his or her attention while performing the measure-
ment. Further, subjects must have normal corrected or uncorrected
visual acuity to fixate the central and peripheral targets and similar
long (L) and medium (M) wavelength cone ratios at these measure-
ment loci; however, recent adaptive optics studies show that L and
M cone distributions can be quite irregular even in normal subjects
(Hofer, Carroll, Neitz, Neitz, & Williams, 2005) and these irregular-
ities could be substantially worse with aging or macular disease.
Additionally, some individuals have measurable amounts of
carotenoids in the peripheral region beyond the traditional refer-
ence point of 7� (Bhosale, Zhao & Bernstein, 2007), which could
lead to an underestimation of foveal MPOD (Wenzel et al., 2007).
Another technique to quantify macular pigment is fundus
reflectometry. Fundus reflectance spectroscopy has been used for
more than 50 years to study the macular pigment (Brindley & Will-
mer, 1952). A number of different variations in the technique exist.
In the imaging mode, fundus reflectometry measurement of macu-
lar pigment is typically obtained at the foveal and parafoveal re-
gion using a fundus camera attached to a charge-couple device
(CCD), and a scanning laser ophthalmoscope (SLO) (Kilbride, Alex-
ander, Fishman, & Fishman, 1989; Wustemeyer, Jahn, Nestler,
Barth, & Wolf, 2002). Images are recorded using blue (480–
488 nm) and green (515–540 nm) wavelengths of light. Light direc-
ted at the fovea will traverse the macular pigment twice and also is
reflected and/or absorbed at layers posterior to the macular pig-
ment including the photoreceptors, the retinal pigment epithe-
lium, the choroid, and sclera (van de Kraats, Berendschot, & van
Norren, 1996). As macular pigment absorbs blue light more than
green light, subtraction of the aligned green and blue images after
logarithmic transformation along with light-propagation-model
dependent scaling of the density differences can be used to approx-
imate the topographic distribution and quantification of macular
pigment. This method is objective and has the capability to map
the spatial distribution of macular pigment, but is based on the
assumption that all the reflected light that is detected has been
attenuated by the macular pigment; however, since other absorb-
ers exist in the eye, it cannot be considered chemically specific.
Imaging fundus reflectometry also requires pupil dilation in some
implementations, expensive equipment, and technical expertise
which limit its widespread use, although a less expensive method
based on a non-mydriatic digital fundus camera has recently been
reported (Bone, Brener, & Gibert, 2007). More recently, MPOD lev-
els over a small central area have been measured by spectral reflec-
tometry in conjunction with an optical model of the fundus layers
(van de Kraats & van Norren, 2008). This method uses multiple
wavelengths and requires neither reference point measurement
nor pupil dilation, but it is non-imaging (van de Kraats, Berends-
chot, Valen, & van Norren, 2006). Significantly, a pilot study using
this approach claims that separate measurement of lutein and zea-
xanthin optical density may be possible (van de Kraats, Kanis, Gen-
ders, & van Norren, 2008).

A third macular pigment measurement method is resonance Ra-
man spectroscopy (RRS) which measures the excitation of bond
vibrations within molecules and which is directly proportional to
the concentration of macular pigment compound existing in the
irradiated macular area. The use of RRS to measure carotenoids
in retinal tissue was first described in 1998 by Bernstein, Geller-
mann, and colleagues on human cadaver and monkey eyes (Bern-
stein, Yoshida, Katz, McClane, & Gellermann, 1998), and several
years later, a device was developed for human clinical studies
(Bernstein et al., 2002; Ermakov, Ermakova, Gellermann, & Bern-
stein, 2004; Zhao, Wintch, Ermakov, Gellermann, & Bernstein,
2003). For measurement by RRS, a subject fixates on a 1 mm spot
of argon laser light which resonantly excites the macular carote-
noids for �0.2 s. The intensity of the Raman scattered light at the
carotenoid conjugated carbon double bond stretch frequency of
1525 cm�1 is quantified after subtraction of background fluores-
cence. The intensity levels of xanthophyll carotenoid Raman scat-
tering at this frequency are linearly associated with total macular
carotenoid content in the region illuminated, and this can be con-
firmed by HPLC-based correlation measurements of excised retinal
tissue samples (Bernstein et al., 1998; Ermakov, McClane, Geller-
mann, & Bernstein, 2001). The Raman signal intensity is typically
expressed as photon counts rather than optical density, but with
proper external calibration using a carotenoid solution whose
absorption/optical density can be measured, the two values can
be correlated. One advantage of RRS as compared to HFP, reflec-
tometry, and AFI is its high chemical specificity since the resonant
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Raman scattering effect of the macular pigment carotenoids at
1525 cm�1 is many orders of magnitude stronger than that of
any other retinal compound. More recently, these same investiga-
tors have developed an imaging mode of ocular RRS to map the dis-
tribution of macular pigment at high spatial resolution
(Sharifzadeh, Zhao, Bernstein, & Gellermann, 2008). RRS measure-
ments of macular pigment do have limitations, however. In partic-
ular, absorbance or scattering by the lens can attenuate the Raman
signal, and wide pupil dilation is generally required for measure-
ment. Also, rather high light levels are used, and a relatively expen-
sive laser light source is required at present which so far has
impeded its broad use.

A fourth macular pigment measurement technique is autofluo-
rescence imaging (AFI). This technique was first described in a non-
imaging configuration in 1994 to determine the integrated single-
path absorption of macular pigment (Delori, 1994) and later in an
imaging mode (Wustemeyer et al., 2002). This method measures
MPOD levels by determining the macular pigment’s attenuation
of the fluorescence of lipofuscin in the retinal pigment epithelium
(RPE) (see Fig. 3 for a comparison of the principles of the various
methods of macular pigment measurement). The best character-
ized fluorophore of lipofuscin is A2E, a compound formed by the
condensation of two retinaldehyde molecules with phosphatidyl-
ethanolamine (Sparrow, Parish, Hashimoto, & Nakanishi, 1999).
Lipofuscin absorbs in the blue wavelength region which overlaps
with that of carotenoids and emits in the orange-red region, well
beyond the absorption of carotenoids (Sparrow et al., 1999). Since
there is virtually no intrinsic fluorescence of macular pigment
(Gellermann et al., 2002), it is possible to excite the lipofuscin
emission within and outside the absorption range of macular
Fig. 3. Schematic diagram of the light pathways used in the various methods to
measure macular pigment in the living human eye. The dark band corresponds to
the location of the macular carotenoids in the fovea. In heterochromatic flicker
photometry (HFP), the photoreceptors detect incoming light which is attenuated
differentially in the fovea and parafovea depending on the amount of macular
pigment encountered. In reflectometry, incoming light is reflected off of various
retinal structures of the outer retina, RPE/choroid, and sclera. The double-pass
attenuation by the macular pigment is then calculated. In resonance Raman
spectroscopy (RRS), incoming light is Raman scattered by the macular carotenoids
of the inner retina which is then optically collected and analyzed spectroscopically
or displayed in an imaging mode. In autofluorescence imaging (AFI), incoming blue
light causes RPE lipofuscin to fluoresce which is subsequently imaged by a scanning
laser ophthalmoscope or a CCD camera. The macular pigment of the fovea
attenuates the incoming blue light but does not attenuate the longer wavelength
fluorescence. This attenuation is imaged and quantified. Abbreviations: inner
plexiform layer (ILM); nerve fiber layer (NFL); Henle fiber, plexiform, and nuclear
layers (HPN); photoreceptor layer (PhR); retinal pigment epithelium (RPE).
(Reprinted from Sharifzadeh et al. (2006) with permission)
pigment (Delori, 1994). To measure macular pigment with this
technique, the fluorescence of lipofuscin is usually excited at two
commonly available laser wavelengths: 488 nm and 514 nm
(argon laser) or 532 nm (YAG laser). Both lipofuscin and macular
pigment absorb light at 488 nm; however, 514 and 532 nm wave-
lengths are less absorbed by carotenoids but do excite lipofuscin. In
order to avoid intrinsic lens fluorescence, AFI imaging of macular
pigment can be done on a confocal scanning laser ophthalmoscope
(SLO) platform (Wustemeyer et al., 2002). Alternatively, a recently
developed approach showed that confounding lens fluorescence
effects could be avoided by still using blue excitation wavelengths
(488 nm laser or 473 nm LED), but restricting the lipofuscin detec-
tion to fluorescence wavelengths above �650 nm (i.e. to wave-
lengths lying outside the fluorescence range of the lens)
(Sharifzadeh et al., 2006). Several examples of AFI images using
this technique are shown in Fig. 4. The macular pigment optical
density levels are calculated from the difference in lipofuscin fluo-
rescence intensities at foveal and extrafoveal sites (typically 7�
eccentricity) (Delori, 1994; Delori, Goger, Hammond, Snodderly,
& Burns, 2001; Delori et al., 1995). In normal subjects or those with
limited macular pathology where lipofusin autofluorescence is rel-
atively uniform in the macula, single wavelength imaging with
blue light is usually sufficient; however when significant AMD
pathology is present, lipofuscin may no longer be uniformly dis-
tributed, and dual wavelength imaging is advisable. AFI has a num-
ber of distinct advantages in that it can map spatial variation in
macular pigment without pupil dilation, is objective, rapid, re-
quires little training of the subject, and minimizes confounding
scattering effects from the anterior ocular media.

As AFI is a relatively new technique, a number of studies have
sought to determine whether MPOD levels determined with AFI
correlated with those established by other methods. It has been
demonstrated that MPOD levels measured with AFI had a signifi-
cant positive correlation with measurements determined by RRS,
motion photometry, reflectometry, and HFP (Canovas et al., in
press; Delori et al., 2001; Egan, Robson, & Moreland, 2009; Robson
et al., 2003; Sharifzadeh et al., 2006; Tanito, Obana, Okazaki, Ohira,
& Gellermann, 2009). In addition to measuring MPOD levels, AFI
can be used clinically to evaluate patients with dry AMD, especially
if they have geographic atrophy, as it can image irregularities of the
RPE and define active borders of geographic atrophy (Schmitz-
Valckenberg et al., 2004). This technique can also be useful to diag-
nose and monitor macular dystrophy patients such as those with
Stargardt disease, cone dystrophies, and pattern dystrophies as
well as for evaluating patients with ocular inflammation such as
uveitis. Additionally, AFI has been found to be an acceptable meth-
od with which to evaluate photopigment abnormalities caused by
disorders of the outer retina (Sekiryu, Iida, Maruko, & Horiguchi,
2009).

8. Lutein and zeaxanthin consumption correlates with
increased MPOD

Over two dozen studies have been published demonstrating an
increase in macular carotenoids following lutein and/or zeaxanthin
supplementation of 2–30 mg per day or a high carotenoid diet
(Aleman et al., 2001; Berendschot et al., 2000; Bernstein et al.,
2002; Bone, 2007; Bone et al., 2003; Cardinault et al., 2003; Duncan
et al., 2002; Francoise, Askew, Lang, & Bernstein, 2006; Hammond,
Johnson, et al., 1997; Johnson, Chung, Caldarella, & Snodderly,
2008; Johnson et al., 2000; Koh et al., 2004; Kopsell et al., 2006;
Kvansakul et al., 2006; Landrum et al., 1997; Morganti, Fabrizi, &
Bruno, 2004; Richer et al., 2004; Rodriguez-Carmona et al., 2006;
Schalch et al., 2007; Schweitzer et al., 2002; Stringham & Ham-
mond, 2008; Trieschmann et al., 2007; Vishwanathan, Goodrow-
Kotyla, Wooten, Wilson, & Nicolosi, 2009; Wenzel, Gerweck,



Fig. 4. Varied macular pigment distributions measured by single-wavelength autofluorescence imaging. Pseudocolor images of the macular carotenoid pigments from four
individuals are on the left showing narrow and broad distributions and ring structures. Line plots along the horizontal axis for the same subjects are shown on the right.
(Reprinted from Sharifzadeh et al. (2006) with permission)
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et al., 2006; Wenzel et al., 2007; Zeimer et al., 2009). One of the
largest clinical trials evaluating the impact of lutein upon MPOD
was the Lutein Antioxidant Supplementation Trial (LAST) (Richer
et al., 2004). Ninety males with atrophic AMD were supplemented
with 10 mg of lutein, 10 mg of lutein plus antioxidants, or a pla-
cebo over the course of one year. Subjects in the lutein-only treat-
ment group experienced a 36% increase in MPOD, whereas a 43%
increase was observed in those who received lutein plus antioxi-
dants. These results suggest that MPOD can be modulated even
in a population suffering from AMD. Additionally, visual acuity,
visual function, photo-stress recovery time, and contrast sensitiv-
ity were significantly improved as well.

Another large intervention trial, the Carotenoids and Co-Antiox-
idants in Age-Related Maculopathy (CARMA) study, has recently
finished (Neelam et al., 2008). Similar to AREDS2, this study is eval-
uating the impact of lutein and zeaxanthin along with co-antioxi-
dants in a large population of AMD patients (433 total). Early
results have shown significant increases in MPOD in subjects sup-
plemented with lutein for 36 months as compared to the placebo
group with the most dramatic increase occurring at 6 months
(Beatty et al., 2009). There was also a positive, significant associa-
tion between serum lutein levels and MPOD.

Another study evaluated the dose response of subjects supple-
mented with 5, 10, or 20 mg of lutein upon MPOD (Landrum
et al., 2004). With increasing lutein dose, subjects exhibited a gen-
eral increase in serum lutein, and with increasing dose the number
of subjects with a positive MPOD response rose, suggesting that lu-
tein intake is positively associated with MPOD levels. Increases in
MPOD were suggested to be specific to lutein as opposed to zea-
xanthin when an investigation by Tanito et al. found that supple-
mentation with 10 mg lutein significantly increased MPOD, while
supplementation with 10 mg zeaxanthin did not have an effect
(Tanito et al., 2009). However, other researchers have found that
zeaxanthin does indeed raise MPOD in quail and humans (Garnett
et al., 2002). In the LUXEA study, supplementation of zeaxanthin
alone produced similar pigment accumulation in the fovea and
parafovea, confounding the MPOD measurements (Schalch et al.,
2007). After correction for this, a 14% MPOD increase resulted for
zeaxanthin alone. The authors concluded that differential spatial
accumulation of lutein relative to zeaxanthin may be relevant to
retinal health. In summary, the differential effects of lutein versus
zeaxanthin supplementation remain controversial. This is
undoubtedly due in part to the difficulty in controlling dietary in-
take of carotenoids in clinical study subjects compounded by the
fact that commercial lutein supplements typically contain about
6% zeaxanthin.

The degree of increase in MPOD levels following lutein or zea-
xanthin supplementation varies widely. This is likely due to subject
demographics, disease state, measurement method used, diet, and
supplementation regimen. Though the majority of subjects show
an increase in MPOD when increasing their lutein and/or zeaxan-
thin consumption, some individuals show no MPOD response even
when levels of lutein and zeaxanthin in the serum increase (Ham-
mond, Johnson, et al., 1997). The reason for this lack of response is
unknown; however, there is speculation that xanthophyll-binding
proteins may already be saturated with ligand in these indviduals
(Trieschmann et al., 2007).
9. Increased MPOD correlates with improvements in visual
performance

The antioxidant and blue light filtering functions of lutein and
zeaxanthin have an impact upon eye health beyond just decreasing
the risk of age-related eye disease. Macular pigment has been
shown to influence visual function and comfort as well. Blue wave-
lengths of visible light are scattered to a greater degree than longer
wavelengths of light (Rayleigh, 1871). Forward scatter in the eye
can produce disability glare and a reduction of contrast in the
retinal image. Scatter is heightened in individuals with lens opac-
ification that occurs with cataract. Absorption of short wavelengths
of visible light by the macular pigment may reduce disability glare.
In line with this hypothesis, recent findings demonstrated that
supplementation with lutein and zeaxanthin increased MPOD in
a healthy population and led to an improvement in tolerance to
glaring light and decreased photo-stress recovery time (Stringham
& Hammond, 2008). It has also been proposed that the macular
pigment may play a role in reducing the effects of blue haze which
is observed when viewing objects in the distance, thereby reducing
their visibility (Wooten & Hammond, 2002). The anatomical local-
ization of macular carotenoids is ideal for them to act as an optical
filter. Lutein and zeaxanthin supplementation has been shown to
enhance this filtering property to improve vision in low light con-
ditions and during glare situations. These data suggest MPOD can
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potentially serve as a biomarker not only for predicting the risk for
eye disease but also for visual function.

Improvements in visual function and comfort parameters have
been associated with lutein and zeaxanthin supplementation and
subsequent increases in MPOD. High levels of MPOD have been
linked directly to preserved foveal function in patients with
annular maculopathy and to preserved visual sensitivity in healthy
subjects (Haegerstrom-Portnoy, 1988; Hammond, Wooten, &
Snodderly, 1998; Parisi et al., 2008; Weiter, Delori, & Dorey,
1988). In addition, macular pigment, likely via its blue light filter-
ing property, contributes to better visual acuity, glare recovery, and
contrast sensitivity in healthy individuals as well as those with
age-related eye diseases (Bahrami et al., 2006; Cangemi, 2007;
Kvansakul et al., 2006; Massacesi, Faletra, Gerosa, Staurenghi, &
Orzales, 2001; Olmedilla, Granado, Blanco, & Vaquero, 2003;
Richer, 1999; Richer et al., 2004). High levels of macular pigment
additionally attenuate chromatic aberration and photophobia
(Wenzel, Fuld, Stringham, & Curran-Celentano, 2006).

Highlighting the importance of the relationship between MPOD
and visual performance is the fact that numerous trials are being
conducted to increase the body of knowledge in this area. Both
the AREDS2 and the CARMA studies are evaluating visual function
in at least a subset of their respective study populations. Addition-
ally, a large trial involving 120 healthy subjects has recently been
completed in Ireland, the Collaborative Optical Macular Pigment
Assessment (COMPASS) Study (Nolan, 2009). This placebo-con-
trolled, randomized and double-blind clinical trial was designed
to assess whether baseline MPOD levels relate to visual perfor-
mance and whether augmentation of MPOD through supplementa-
tion with lutein and zeaxanthin enhances visual performance. The
Zeaxanthin and Visual Function (ZVF) Study is evaluating MPOD,
visual acuity, contrast sensitivity, shape discrimination, color vi-
sion, glare recovery, and lipofuscin pattern changes following sup-
plementation with 9 mg lutein, 8 mg zeaxanthin, or a combination
of the two xanthophylls per day for 12 months (Richer et al., 2008).

10. Increased MPOD is associated with decreased risk for some
eye diseases

The retina contains highly unsaturated lipids susceptible to oxi-
dative damage in a region of high oxygen tension and light expo-
sure. AMD is believed to be in part a disease of oxidative stress,
so antioxidant nutrients may play a role in protection against
AMD. There is a growing body of evidence suggesting a relation-
ship between levels of macular pigment and risk of age-related
eye diseases, although a direct link has not been established. For
example, risk factors for AMD including tobacco use, light iris color,
age, obesity, and gender are associated with low levels of MPOD
(Beatty et al., 2001; Hammond & Caruso-Avery, 2000; Hammond,
Fuld, & Snodderly, 1996; Hammond, Wooten, & Snodderly, 1996;
Hammond et al., 1996, 2002; Nolan et al., 2004). As mentioned pre-
viously, an inverse relationship between MPOD and age, current
and prior use of tobacco, and family history of age-related macu-
lopathy was found in a study of 828 healthy subjects (Nolan, Stack,
O’Donovan, et al., 2007). Some studies have shown no association
with MPOD and age; however, these results did not take into ac-
count the other previously mentioned variables believed to be re-
lated to MPOD (Bone et al., 1988; Werner, Donnelly, & Kliegl,
1987).

High levels of MPOD may be a protective factor against photo-
oxidative damage caused by blue light and potentially reduce one’s
risk for AMD. This hypothesis is supported by a number of observa-
tional studies. When lutein and zeaxanthin were extracted from
healthy and AMD donor eyes and examined via HPLC, concentra-
tions of lutein and zeaxanthin were significantly lower in AMD
eyes compared to healthy eyes (Bone et al., 2001). Beatty and col-
leagues examined MPOD in a Northern European population using
HFP and discovered significantly less macular pigment in eyes at
high risk for AMD because of advanced disease in the fellow eye
as compared to eyes with no known risk (Beatty et al., 2001). A
study of Japanese adults using RRS found that macular carotenoid
levels in age-related maculopathy (ARM) patients were signifi-
cantly lower than those in healthy volunteers, and MPOD levels
in later ARM (AMD) patients were significantly lower than levels
found in patients with early ARM (Obana et al., 2008). It was also
observed in this study that subjects with lower MPOD levels exhib-
ited a greater progression of disease in the fellow eye, implying
that lower MPOD may be one risk factor of ARM progression. The
CAREDS study of 1698 women aged 54–86 years found an indirect
association (though not significant) between MPOD and AMD risk
after exclusion of subjects with unstable diets and conditions re-
lated to AMD risk (LaRowe et al., 2008). In a separate study, MPOD
was measured in 93 AMD eyes and 220 normal eyes, and results
showed that AMD patients who were not taking lutein supple-
ments had 32% lower MPOD than healthy subjects. Interestingly,
AMD patients taking high-dose lutein supplements after initial
AMD diagnosis were found to have MPOD levels indistinguishable
from those of control patients (Bernstein et al., 2002).

The low MPOD observed in AMD patients in these studies ap-
pears to be specific for this retinal disorder, as patients with retini-
tis pigmentosa and choroideremia had macular pigment levels
similar to healthy controls (Aleman et al., 2001; Alexander, Kil-
bride, Fishman, & Fishman, 1987; Duncan et al., 2002; Zhao et al.,
2003). On the other hand, five patients with Stargardt macular dys-
trophy also had significantly lower MPOD as compared to healthy
controls, suggesting that MPOD level could be an indicator for risk
of other eye diseases as well (Zhao et al., 2003). Establishing a
direct link between MPOD and AMD risk is quite challenging due
to numerous variables including measurement method, diet and
supplementation assessment, age, and disease state within the
study population. Due to these inherent confounding variables,
there are inconsistencies in the existing available data as two
studies have found no association between MPOD and AMD risk
(Berendschot, Willemse-Assink, Bastiaanse, de Jong, & van Norren,
2002; Jahn et al., 2005). Clearly, the relationship between MPOD
and AMD risk is just now being elucidated. There is a great need
for simplified clinical MPOD instruments as well as randomized,
double-blind, placebo-controlled studies to firmly establish MPOD
as a risk factor for AMD and other retinal disorders.

One important question that arises is: are low amounts of lutein
and zeaxanthin in the AMD-affected macula merely a consequence
of the disease? There is no conclusive answer yet, but Bone and
colleagues provide evidence to the contrary. They observed lower
lutein and zeaxanthin concentrations in the peripheral retina of
autopsy eyes from persons with AMD, relative to controls, suggest-
ing that pathology in the central macular did not explain their find-
ing that AMD eyes have significantly less macular pigment than
healthy eyes (Bone et al., 2001). It has been suggested that metab-
olism of lutein and zeaxanthin into various secondary products
may account for the changes in MPOD in AMD (Kalariya, Ramana,
Srivastava, & van Kuijk, 2008). This hypothesis is not widely
accepted and requires further investigation.

11. Conclusions of the Macular Pigment Consensus Panel

The current body of knowledge regarding macular lutein and
zeaxanthin and their roles in protection against age-related eye
diseases support the hypothesis that AMD is in part a manifesta-
tion of an ocular deficiency of lutein and/or zeaxanthin and that
higher macular levels of these xanthophyll carotenoids may pro-
tect against AMD. The suggestion that low macular pigment
amount or certain spatial distribution profiles are risk factors for
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AMD has profound implications. As macular pigment is comprised
of constituents derived solely from the diet, dietary modification
could prevent or delay the most common cause of irreversible
blindness in Western society. Macular pigment measurement by
various methods has the potential to become a commonly tested
biomarker to measure risk for eye disease and visual function.
Knowledge of one’s MPOD level and spatial distribution may en-
able individuals to take easy, safe, cost-effective measures to im-
prove their vision and quality of life.

The panel concluded that it might be possible to identify indi-
viduals at reduced, medium, and elevated risk for age-related eye
disease based on high, medium, and low central MPOD levels,
respectively, although macular pigment distribution profiles may
be even more important (see below) because central MPOD is only
weakly proportional to the total amount of the xanthophyll pig-
ments and ranges from undetectable to over 1.0 optical density
units (d.u.) at the peak. The panel members agreed that a central
MPOD below 0.2 d.u. should be considered low, between 0.2 d.u.
and 0.5 d.u. is mid-range, and levels above 0.5 d.u. as high. When
compiling data from numerous studies across a diverse US popula-
tion (n = 846), approximately 43% have a central MPOD below 0.2
d.u. and about 16% have an MPOD level below 0.1 d.u. (Wooten
& Hammond, 2002). These data are also consistent with the mean
central MPOD level of a study of 828 healthy Irish subjects (Nolan,
Stack, O’Donovan, et al., 2007). In this population, the mean central
MPOD was 0.30 d.u. which is comparable to values determined in
other studies (ranging from 0.21 to 0.44 d.u.) using similar age
groups and testing conditions (Berendschot & van Norren, 2005;
Ciulla et al., 2001; Hammond & Caruso-Avery, 2000; Liew et al.,
2006; Mellerio et al., 2002; Nolan, Stack, O’Donovan, et al., 2007).
The panel acknowledged that whether or not central MPOD de-
clines with age remains controversial. Since discordant age-MPOD
correlations have been observed with a variety of techniques, these
differing results may be related to population selection (i.e. clinic-
based versus recruited volunteers) rather than methodological dif-
ferences. In any event, it is important to consider potential age-re-
lated MPOD changes in any case-control study or in mass public
screening of MPOD levels.

The panel members agreed that the diverse methods to mea-
sure macular pigment provide great value to the study of the role
of nutrients in combating age-related eye disease. As with any sci-
entific technique, each one has its own strengths and weaknesses.
The true ‘‘gold standard” of macular pigment measurement, HPLC,
cannot be made non-invasive and suffers from limited spatial res-
olution, but it can be used to cross validate other techniques, as has
been done for RRS on human cadaver and living monkey eyes. HFP
has been employed widely in macular pigment research because
the apparatus can be made relatively inexpensively, does not re-
quire pupil dilation, and, with proper operator and subject training,
it can yield reproducible results. HFP can be difficult for some sub-
jects to perform, and spatial mapping of macular pigment is pred-
icated on a limited number of eccentricities. Reflectometry has a
much shorter clinical and research track record but is the only
non-invasive technique in which it has been claimed that lutein
and zeaxanthin might be distinguishable in a non-imaging variant
of the method. This method relies on mathematical models and
assumptions, and is not particularly chemically specific, especially
in an imaging mode. RRS has exquisite chemical specificity for
carotenoids, and, like reflectometry, can be implemented in an
integral mode or an imaging mode. The apparatus can be expensive
and complex, however, and there are concerns about age-related
lens and vitreous changes that can attenuate the Raman signal.
AFI has significant potential since it is well suited to a high resolu-
tion imaging mode, and recent technological advances have dem-
onstrated that a non-confocal, non-mydriatic, LED-based system
can be made at a reasonable cost relative to much more expensive
SLO-based systems. AFI is relatively specific if performed correctly,
but like all other optical methods can be difficult to implement in
subjects with significant macular pathology. Despite this wide ar-
ray of macular pigment measurement methods, it is reassuring
that there is generally good agreement when these techniques
are used in the same populations. The panel members agreed that
clinical studies of the role of the macular pigment in ocular health
and disease should use the chosen measurement technique in a
consistent manner.

Screening for macular pigment central optical density levels
may best be accomplished using HFP or spectral reflectance meth-
ods because of their relative simplicity, low cost, and no require-
ment of pupil dilation as long as proper operator and subject
training are employed in the case of HFP. Single-wavelength auto-
fluorescence imaging may also be used for screening, perhaps at a
higher cost. For more detailed clinical studies in aging subjects and
patients with AMD, all methods are applicable as long as the
assumptions on which each method is based are not flagrantly vio-
lated. Among all the methods, resonant Raman spectroscopy (RRS)
may be most appropriate in advanced AMD patients because it is
highly specific and does not depend upon anatomical and func-
tional integrity of the macular region as long as central fixation
is maintained or video targeting is implemented. The panel also
acknowledged that a number of studies have suggested that spatial
distribution of macular pigment may be associated with the risk
for AMD. Resonance Raman imaging and AFI are particularly effec-
tive in obtaining spatial distribution profiles in addition to central
MPOD values. An assessment of total macular pigment amount and
its spatial distribution may more accurately describe AMD risk as
compared to peak MPOD alone.

More clinical studies are necessary to more accurately define
the range of MPOD values and distributions that might correlate
with disease risk; however, the body of evidence that supports a
link between a lack of macular pigment and AMD risk is growing.
As the ability to more efficiently and cost effectively measure
MPOD levels improves, a more precise relationship between opti-
cal density values and spatial distribution of macular pigment
and eye health will emerge. The goal of this understanding is to en-
able individuals with low levels of MPOD, and possibly greater risk
for eye disease, to take actions to improve their eye health such as
improving their diet by consuming more fruits, vegetables and
healthy fats, not smoking, and maintaining a healthy weight. In-
deed, the greatest rate of increase in macular pigment is found in
patients with the lowest baseline who may not be obtaining en-
ough plant food in their diet (Richer et al., 2007; Stringham & Ham-
mond, 2008).

In those who are unable to make these lifestyle changes in a
sufficient manner, supplementation with lutein and zeaxanthin
is a compelling option based upon available science. The ability
to measure distributions of the macular pigment as well as to
estimate the amounts of lutein and zeaxanthin in the retina, of-
fers new tools for detailed studies of the anatomical localization
of the carotenoids and for the optimization of supplementation
strategies. Increased intake of lutein and zeaxanthin through diet
or supplementation has been demonstrated in many studies to
increase MPOD levels, improve visual function, and reduce the
risk of age-related eye diseases. Their antioxidant and blue light
filtering properties provide a strong basis for investigating their
potential roles in preventing or slowing the progression of
certain age-related eye diseases that manifest in part from
cumulative oxidative damage. Expansion of the scientific data
and improvements in methodology and equipment necessary to
measure MPOD levels in a diverse population will hopefully
bring about a paradigm shift in the way we recognize, diagnose,
and treat those at risk for AMD and other age-related eye
diseases.
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