

Discovery MI DR

Digital Ready, with LightBurst LBS Detector

gehealthcare.com

Discovery[™] MI DR is premium PET/CT system with the added flexibility of a standalone diagnostic CT. It delivers the accurate, reproducible results referring physicians require and the added clinical versatility you need to expand your practice beyond FDG and oncology.

With Discovery MI DR, get ready to leverage deep learnings from digital software and analytics innovations. Get ready for potential future needs with a system that easily adapts to our digital PET detector. And most importantly, get ready for meaningful insights that can help lead you to your next true discovery.

PET Features - Quantitative Imaging

ACCURATE RESULTS START WITH THE LETTER 'Q'

Quantitation helped establish PET/CT as a valuable clinical tool. It provided an important starting point to find and follow disease throughout the course of treatment, but it was limited by the technologies used to produce it. Now, consistent, accurate SUV measurements are possible with Q.SUV. The 'Q' is important. It signifies the SUV measurement was produced exclusively from our innovative PET image reconstruction technology, Q.Clear, which delivers not only up to a 2x improvement in PET quantitation accuracy (SUVmean), but also up to a 2x improvement in image quality (SNR). For this reason, Q.Clear is a critical component of Discovery MI DR.

Q.SUV is more than a starting point for clinical decisions. Because it is more accurate and consistent than conventional methods, it becomes more than a number, it becomes a tool for communication. As a result, it sharpens communication between radiologists, oncologists and patients. Be sure your SUV starts with a 'Q'.

Quantitative Imag	ging - PET Reconstruction
PET Reconstruction	Powerful, expandable GE PET reconstruction technology makes the latest PET/CT workflows clinically relevant by handling massive PET/CT data sets with ease, delivering the clinical and research flexibility our customers demand.
	Reconstruct Q.Clear and motion-corrected gated studies at incredible speeds with Q.Core Power.
Q.Clear [‡]	Full convergence iterative reconstruction technology providing up to 2 times improvement in PET quantitation accuracy (SUV _{mean}) and up to 2 times improvement in image quality (SNR) for small lesion detection, fast and efficient reading and a more confident diagnosis.
Q.AC‡	Accurate attenuation correction is required for quantitative PET imaging. But in large anatomy imaging at low doses, the CT
	beam may not be strong enough to fully penetrate through the patient to the detector, potentially resulting in variations
	in attenuation measurements. Our Q.AC algorithm is designed to reduce potential variance, helping to ensure that the attenuation coefficients used in image reconstruction are accurate. This may improve consistency even in the most clinically-demanding circumstances.

Quantitative Imaging - Motion Correction

Q.Freeze [‡]	Q.Freeze is designed to combine the quantitative benefits of 4D phase-matched PET/CT imaging into a single static image. By collecting CT and PET data at each phase of the breathing cycle, then matching the data for attenuation correction purposes, Q.Freeze is designed to facilitate quantitative consistency. None of the acquisition data is wasted, as 100% of the counts collected are combined to create a single static image. The goal – a resulting image that has the dual benefit of frozen patient motion and reduced image noise. Combine with Q.AC to create 4D cine data for attenuation correction of PET images at low dose levels.
Q.Static [‡]	Represents a starting point for adding motion correction techniques to your facility and the opportunity to build towards a full 4D phasematched workflow. Without disrupting your standard whole-body workflow, Q.Static automatically isolates data when organs are in a low-motion state, thereby correcting for motion across the entire chest or torso. The result is a single image series with reduced blurring from organ motion and therefore more consistent quantitation compared to a static image.

PET Features - Quantitative Imaging & Innovative Acquisition

Quality Contr	ol, Workflow & Reporting
Daily Quality Assurance	The new Daily Quality Assurance (DQA) procedure helps to minimize radiation exposure and optimize efficiency. The newly developed ⁶⁸ Ge phantom, which lasts for at least 24 months, is only 25% the weight of a conventional 30 cm flood phantom. The procedure takes less than 10 minutes. ¹
Temp	Q.Temp is a Real Time Temperature Compensation technology that uses the sensors to measure the temperature of each detector unit and individually adjusts the gain in real time to ensure that temperature fluctuations in the scan room do not impact system performance and, therefore, quantitative measurements.
Prep‡	 Q.Prep is designed to facilitate the patient exam preparation. Q.Prep offers the following functions: Ability to view parameters of prior exams Compare prior parameters to current exams Ability to pre-enter study information
Check	User configurable data integrity check that can help ensure parameters important for quantitative imaging are saved in the patient DICOM data prior to network. It includes blood glucose level, date of last therapy, and ability to note if patient is diabetic.
ET VCAR‡	Integrated into the OncoQuant oncology platform, PET VCAR (Volume Computer Assisted Reading) improves visualization and analytical monitoring of disease progression or response to therapy. It provides the abilityto compute various Standard Uptake Values (SUV), to measure metabolic activity and volume for PET defined areas of activity, and compare CT, PET/CT and MR studies for baseline and follow-up studies. PET VCAR is an advanced application available on AW and AW Server.
	 SUV PEAK generated by PERCIST recommendations Summary Table for interactive, efficient review of PET functional and CT morphological ROI/ VOI data Q.Check outputs quantitative information for PET imaging and patient parameters for each loaded study. Adaptable workflow for clinical reading to advanced research using tools supporting PERCIST, EORTC, RECIST 1.0, 1.1, and WHO criteria (optional). Direct access to Integrated Registration option.

• Direct access to Integrated Registration option.

Q.Core Power[‡] -

Next Generation PET Reconstruction Architecture

Q.Core Power is the next generation expandable PET reconstruction technology that makes the latest PET/CT workflows clinically relevant by handling massive PET data sets with ease. The Q.Core Power computer with GPU processors (SI270 8-core 2.6 GHz Intel® Xeon processors with 96Gb DDR3 RAM and AMD FirePro S9150 Graphics Processing Units) routinely reconstruct PET images for clinically relevant data reconstruction and display of images while your patient is still on the table. Reconstruct Q.Clear and motion-corrected gated studies at incredible speeds.

Q.CLEAR‡	 Full convergence iterative reconstructiondesigned to provide up to 2 times improvement in PET quantitation accuracy (SUV_{mean}) up to 2 times improvement in image quality (SNR)
SharpIR [‡]	Point Spread Function modeling enhances visual contrast and resolution in both whole-body and brain PET images. SharpIR provides uniform High Definition resolution over a 70 cm PET FOV.
VUE Point FX [‡]	VUE Point FX, time-of-flight image reconstruction, leverages the innovative VUE Point HD iterative process by adding timing information to each step within the iterative loop and improving signal-to-noise ratio.
VUE Point HD	VUE Point HD utilizes a full 3D Iterative Reconstruction technique with all corrections within the loop. It offers: enhanced resolution detector geometry modeling; model-based 3D scatter correction; scatter estimation outside the FOV; exclusive randoms corrections based on singles; dead time correction with pileup estimates.
WideView	See the entire FOV with 70 cm DFOV in PET and CT.

[‡]Optional or upgradeable, contact local sales team for specific details. ¹Represents typical system performance.

TECHNOLOGY

ENGINEERED FOR PRECISION

Our vision for the future of PET is completely digital, from acquisition to reconstruction to open source reporting solutions. Each component of the PET workflow is important to the results you and your patients seek. A digital PET experience is what connects all the important technologies, data, insights and people together to make PET an indispensable tool – the tool you need to help you raise the clinical value of PET and then push its limits even further.

Discovery MI DR is the only PET/CT system that brings together the sensitivity of detection with the most innovative reconstruction technology available, the combination of Time-of-Flight and Q.Clear[‡]. Its LightBurst LBS PET detector is an important step of our vision to digital future for PET. It combines lutetium based scintillator crystal array with proven and reliable fast Photomultiplier Tube (PMT) with integrated electronics allowing accurate and high performance Time of Flight acquisition. The system has been designed with continuum in mind and the hardware platform is capable to host new PET detector technology. This is why call it Discovery MI DR!

In addition to advancements in reconstruction and detection technology, Discovery MI DR includes diagnostic CT innovations from our Revolution[™] EVO. It combines the Clarity Imaging System with the speed of the Performix 40 Plus tube with our proprietary HiLight CT detector to deliver up to a 2x increase in spatial resolution when used with ASiR-V². Our innovative ASiR-V[‡] iterative reconstruction method comes standard to reduce CT dose by up to 82 percent at the same image quality in routine imaging across applications^{2,3}. And with [‡]Smart MAR virtually eliminating streaks and shadows from metal artifacts, you'll save valuable time previously spent correcting images. Designed with a purpose, with you in mind, this CT technology is the ideal fit for Discovery MI DR.

[‡]Optional or upgradeable, contact local sales team for specific details.

²In clinical practice, the use of ASiR-V may reduce CT patient dose depending on the clinical task, patient size, anatomical location, and clinical practice. A consultation with a radiologist and a physicist should be made to determine the appropriate dose to obtain diagnostic image quality for the particular clinical task. Low Contrast Detectability (LCD), Image Noise, Spatial Resolution and Artifact were assessed using reference factory protocols comparing ASiR-V and FBP. The LCD measured in 0.625 mm slices and tested for both head and body modes using the MITA CT IQ Phantom (CCT183, The Phantom Laboratory), using model observer method.

³Image quality as defined by low contrast detectability.

PET Specifications

LightBurst LBS Detector		
Sensitivity ^{**}	7.5 cps/kBq	
Timing Resolution	560 psec (typical)	
Sensitivity/mm ^{**}	0.05 cps/kBq*mm	
Scatter fraction ¹¹	37%	
	30 kcps @ 2.4 kBq/ml	
Peak NECR [™]	130 kcps @ 29.5 KBq/ml	
Coincidence window	4.9 ns	
Energy threshold	425 KeV	

LightBurst LBS Detector		
Scintillator material	LBS-Lutetium based scintillator	
Scintillator dimensions	4.2 mm x 6.3 mm x 25 mm	
Number of detector rings	24 (13,824 crystals)	
Number of Anodes/PMT	1024 (256 QUAD-ANODE Photomultiplier tubes)	
Number of detectors	256	
Axial field of view	15.7 cm	
Transaxial field of view	70 cm	
Slice overlap	User defined 1-23	

Resolution	VUE Point HD ^₄
Axial @ 1 cm	5.0 mm
Axial @ 10 cm	5.0 mm
Transaxial @ 1 cm	4.0 mm
Transaxial @ 10 cm	4.5 mm

⁺⁺ The following specifications represent typical system performance, measured according to NEMA Standards Publication NU2-2012 and F18-NIST Standard 2008. Sensitivity represents the average of measurements at 0 and 10 cm.

High IQ with CT Clarity Imaging Chain

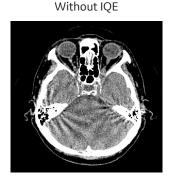
CT Clarity Imaging Chain consists of HiLight Clarity Detector, DAS, Performix40 Plus X-ray Tube and ASiR-V[‡] reconstruction, to deliver high resolution imaging.

For better performance CT Clarity Imaging Chain provides enhancement of spatial resolution up to 20% compared with previous GE technology.

HiLight Clarity Detector

Inherited directly from our breakthrough Revolution CT system, the Clarity detector is the heart of Revolution EVO. Visualize fine details in the image with its 0.28 mm high-resolution imaging capabilities. The Clarity detector delivers improved dose efficiency and signal-to-noise ratio, in addition to large coverage with z-axis uniformity.

Integrated Clarity Data Acquisition System (DAS)


Thanks to its revolutionary, patented design, the data acquisition system is integrated directly onto the photo diode. This reduces the size of the data acquisition system by 75%, reduces electronic noise by 44%, and lowers power consumption by 90% compared to previous-generation systems.

Perfomix[™] 40 Plus X-ray Tube

- Performix 40 Plus X-ray tube provides less focus movement.
- A liquid bearing tube that has a capability of less-wear of Tube bearing and is enabled up to 0.35[‡] second rotation speed with a routine scan. Discovery MI DR allows users to utilize helical pitches up to 1.531 and 0.35 second rotation speed that meets GE's image quality specifications for lower pitch acquisitions This high pitch and 0.35 second[‡] rotation speed enables faster scan times which may allow for shorter breath holds helping to reduce motion artifacts from patient and organ movement. As an example, using this higher pitch, a full-body trauma scan of 1000 mm can be acquired in as few as 6 seconds.

High Speed with IQ Enhance

IQ Enhance (IQE) is an advanced algorithm designed to help reduce artifact in thin-slice helical scanning. Use of IQE allows fast pitch scanning for larger anatomical coverage at the same image quality compared to slower helical scanning without IQE (up to 1.531 for 175 mm/sec acquisitions).

AAR – Advanced Artifact Reduction

Advanced Artifact Reduction Filter significantly reduces streaking artifacts when highly absorbent objects are in the field of view; e.g., a large shoulder.

Two Path Dual-Energy Acquisition*

GE's protocol management is improved with the addition of a workflow improvement feature, which allows easy configuration of back-to-back axial or helical scans of the same anatomy at two different X-ray energies (kVps). To further improve registration accuracy, patient immobilization may be utilized. The additionally acquired dual energy data can be post-processed on the console or AW workstation using Add/Sub function to gain additional clinical information.

Conjugate Cone-Beam Back Projection

Conjugate Cone-Beam Back Projection utilizes two sets of counter-opposed projections to provide 128 distinct projection measurements per rotation for axial and a helical acquisition mode to significantly improve Z-resolution.

Overlapped Reconstruction[‡]

The overlapped reconstruction feature enables up to 128 slices per rotation in axial scanning modes and delivers improved Z-axis visualization performance relative to non-overlapped reconstruction.

Ultra Kernel[‡]

Adaptive Enhance Level Adjustment (AELA) can improve visual spatial resolution while maintaining pixel noise standard deviation and artifact. The Ultra Kernel feature is helpful in enhancing the visualization of small anatomical structures with high contrast.

Smart MAR[‡]

Smart Metal Artifact Reduction uses a three-stage, projectionbased process to help deliver consistent, enhanced image quality. It is designed to enhance clarity across a range of cases with metal including scans with hip implants, dental fillings, screws or other metals in the body.

Dose Management Technology

ASiR ⁵ : Adaptive Statistical Iterative Reconstruction dose reduction technology	ASiR [™] dose reduction technology: A reconstruction technology that may enable reduction in pixel noise standard deviation. The ASiR reconstruction algorithm may allow for reduced mA in the acquisition of diagnostic images, thereby reducing the dose required.
ASiR-V ^{™6‡} : Adaptive Statistical Iterative Reconstruction dose reduction technology	ASiR-V allows healthcare providers to lower dose by 50 to 82% as compared to standard filtered back-projection (FBP) reconstruction at the same image quality. ASiR-V combines the speed of ASiR with additional capabilities from Veo, GE's full model-based iterative reconstruction technology. By applying more advanced modeling and optimization technologies in projection- and image-space as part of the iterative reconstruction process, ASiR-V provides dose reduction well beyond that of ASiR, while maintaining low-contrast detectability, like Veo.
	Lower dose: ASiR-V reduces dose by 50% to 82% relative to FBP at the same image quality. Low contrast detectability improvement: ASiR-V improves low contrast detectability by 59% to 135% at the same dose.
	Image Noise improvement: ASiR-V reduces image noise up to 91% at the same dose. Spatial resolution enhancement: ASiR-V improves spatial resolution up to 2.07x (107%) at same image noise.
	Artifact reduction: ASiR-V image reconstruction has the capability to reduce low signal artifact such as streak artifact compared to FBP.
3D mA modulation ⁷	Real-Time 3D mA dose modulation acquisitions deliver consistent image quality and may reduce dose compared with fixed mA acquisitions. mA modulation is designed to optimize the dose for the user prescribed noise index. Its effect on dose depends on the patient body habitus, and prescribed noise setting.

⁵ In clinical practice, the use of ASiR may reduce CT patient dose depending on the clinical task, patient size, anatomical location and clinical practice. A consultation with a radiologist and a physicist should be made to determine the appropriate dose to obtain diagnostic image quality for the particular clinical task.

⁶ In clinical practice, the use of ASiR-V may reduce CT patient dose depending on the clinical task, patient size, anatomical location and clinical practice. A consultation with a radiologist and a physicist should be made to determine the appropriate dose to obtain diagnostic image quality for the particular clinical task. Image quality as defined by low contrast detectability. (LCD), Image Noise, Spatial Resolution and Artifact were assessed using reference factory protocols comparing ASiR-V and FBP. The LCD measured in 0.625 mm slices and tested for both head and body modes using the MITA CT IQ Phantom (CCT183, The Phantom Laboratory), using model observer method.

⁷ mA modulation is designed to optimize the dose for user prescribed noise index. It's effect on dose depends on the patient body habitus, and prescribed noise setting.

[‡]Optional or upgradeable, contact local sales team for specific details.

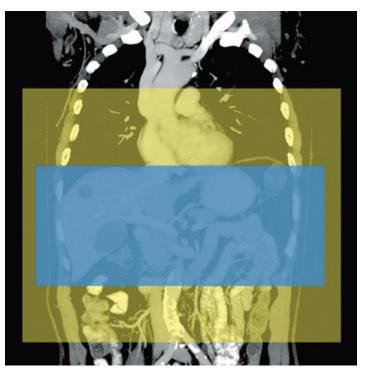
Dose Manag	ement Technology	Dose Managem	ent Technology
 principle in helping its customers optimiz dose. GE has provided many tools to help the clinician minimize dose while achievin diagnostic quality images. ECG mA Modulation: For cardiac applications, prospective ECG mA 	• ECG mA Modulation: For cardiac	Dose Reporting	Dose Reporting: CTDIvol, DLP, Geometric Dose Efficiency, and Phantom Size displays during scan prescription and provides dose information. The CTDIvol, DLP, and Phantom Size used to track dose is automatically saved once the user selects End Exam.
	modulation automatically adjusts the mA to minimize the patient's exposure to X-rays – reducing mA during systolic phases of the cardiac cycle. This provides clear images and allows you to reduce mA primarily in		DICOM Structured Dose Report generates a CT Dose Report, which can enable tracking of dose (CTDIvol, DLP and Phantom Size) for the patient by the hospital radiation tracking system/RIS/HIS.
	the systolic phases of the cardiac cycle – yet gives you enough power to obtain quality images for functional analysis.	Dose Check	Provides the user tools to guide dose given in clinical practice and is based on the standard XR-25-2010 published by
	 CT 4Kids: The pediatric protocols are based upon a child's size, age, and weight andtailor the dose or treatment to the size of the 		The Association of Electrical and Medical Imaging Equipment Manufacturers (NEMA)
	patient. The Head and Orbit categories areage based. The rest of the categories are height and weight based protocols.		Dose Check provides the following:
			 Checking against a Notification Value if the estimated dose for the scan is above your site typical dose value
	 Color Coding Kids provides pediatric scan protocols based on the Broselow-Luten Pediatric System[®]. This Color Coding system is incorporated into the protocol selection on the operator's console. 		 Checking against an Alert Value where the user needs specific authority to continue the scan at the current estimated dose without changing the scan parameters
	 SmartTrack: The tracking collimator keeps the beam focused only on the active detector cells, and makes sub-millimeter scanning possible with high dose efficiency. 		 Defining Alert Values for Adult and Pediatric with age threshold Audit logging and review Protocol Change Control
	• SmartBeam: The collimator contains two independently controlled tungsten cams. The rotation of the cams provides continuous variable beam thickness and Z-axis position. The collimator also contains	Dose Display	CTDIvol (Volume CTDIw), DLP (Dose Length Product), Geometric Dose Efficiency and Phantom Size are displayed during scan prescription and provide dose information to the operator.
	three bowtie beam filters that filter and shape the beam to optimize dose and image performance.	Biopsy Mode	Biopsy Mode improves the efficiency of setting up and acquiring slices during a biopsy. All biopsy scan parameters are available on a single screen from which you can launch the biopsy scan.
		Organ Dose Modulation	ODM provides reduction of radiation dose via X-ray tube current modulation for

	available on a single screen from which you can launch the biopsy scan.
organ Dose Iodulation	ODM provides reduction of radiation dose via X-ray tube current modulation for superficial tissues, such as breasts.
	ODM may enable equivalent pixel noise standard deviation without decreasing productivity as with the use of conventional superficial dose reduction techniques.

Cardiology T	echnology	
5-Beat Cardiac™‡*	Discovery MI DR has the ability to cover the heart in as little as 5 beats. The following calculation is based on a patient heart rate of 60 bpm, and a total coverage of 120 mm (nominal scan length to cover the heart), using a helical pitch of 0.22:1, and a rotation speed of 0.35 second rotation. Table_Speed = $\frac{0.22*40 \text{ mm/ rotation}}{0.35s/\text{ rotation}} = 25.14 \text{ mm/ s}$ Total_Scan_Time = $\frac{120 \text{ mm}}{25.14 \text{ mm/ s}} = 4.8s$ Number_of_Beats = $\frac{60beats/\text{ min}}{60s/\text{ min}}$ *4.8s = 4.8beats	
Snapshot Pulse ^{8,9,‡*}	SnapShot Pulse mode is for low dose imaging of the coronary arteries. SnapShot Pulse can also be used to image structures that are near to the heart and may be affected by heart motion such as thoracic aortas or pulmonary arteries. Prospective Gating based SnapShot Pulse achieves up to 83% dose reduction compared to ECG gated helical acquisition mode.	
44 msec cardiac temporal resolutions‡	With 0.35 second rotation [‡] and SnapShot scan algorithm the product not only offers fast acquisition speed, it builds on GE's variable speed technology that has now been expanded for cardiovascular imaging to include 0.35, 0.375, 0.40, 0.425, 0.45, 0.475 and 0.50 second scans – so you have the power to customize rotation speed to your patients' heart rates	
SnapShot Freeze ^{‡*}	Provides 29 msec effective temporal resolution. An intelligent motion correction algorithm, which is designed to reduce blurring of coronary arteries due to motion artifacts. Utilization of SnapShot Freeze in clinical practice may assist the physician's diagnostic interpretability of coronary CTA by reducing the burden of non-diagnostic segments. Using a mechanical heart phantom it was shown that SnapShot Freeze reduces motion artifacts up to 6x, equivalent to a 0.058 second gantry rotation speed with effective temporal resolution of 29 msec.	
ECG viewer/ editor	Allows users to view and retrospectively modify intervals and adjust location of triggers for cardiac cycles based on the ECG waveform displayed on the console. This capability may improve successful cardiovascular acquisition rate in cases with suboptimal triggers or irregular heartbeats such as PVCs, PACs and arrhythmias.	

ardiology Technology napShot Helps users optimize ECG-gated CT acquisitions ssist‡* based on patient heart rate characteristics. SnapShot Assist uses the patient's recorded heart rate information to display scan parameters (including scan mode, cardiac phases, padding and pitch) that could be used during the cardiac CT scan. SnapShot Assist generates a cardiac scan parameter recommendation using the patient's ECG analysis and user defined protocol selection algorithm. It uses the patient's recorded heart rate information to predict the heart rate behavior during a CCTA scan to assist the user with optimization of the parameters on a per-patient basis. Acquisition parameters displayed include scan mode (Cine SnapShot Pulse, Helical SnapShot Segment, etc.), cardiac phases, padding, and pitch. User Profiles define scan parameters within the heart rate and variability categories for a specific patient group and cardiac scan mode. martScore™ Acquires prospective ECG gating ro‡* measurements, which provides information that is valuable for scan timing. Using the measurements, the system synchronizes the collection of data with the cardiac cycle.

[‡]Optional or upgradeable, contact local sales team for specific details.


*Optional - Only available for 64-slice or 128-slice configurations

⁸Dose reduction was measured on a standard 20cm water phantom (holding pixel noise standard deviation constant) compared to a SnapShot Pulse prospective gated axial acquisition with 75ms padding at 120kV/500mA to a cardiac helical acquisition (40BPM) 120kV/450mA both with a 140mm scan coverage. ⁹In clinical practice, the use of SnapShot Pulse may reduce cardiac CT patient dose depending on the clinical task and patient heart rate. A consultation with a radiologist should be made to determine the appropriate acquisition mode and scan settings to obtain diagnostic image quality for the particular clinical task.

Neurology & Perfusion Technology

Volume Shuttle‡	Provides the single-injection 80 mm (2x wider coverage, 128 slice-width) Volume Shuttle acquisition scan. Volume Shuttle is a repetitive axial scan mode where the table shuttles back and forth between two consecutive imaging locations (X-ray is off during table movement). Each location covers 40 mm in the Z-direction for a total of 80 mm of axial coverage in Z. The shuttle action repeats over a defined duration to enable evaluation of tissue changes over time.
Volume Helical Shuttle‡	Volume Helical Shuttle is a continuous scan technique that is a bi-directional scan mode, covers up to 312.5 mm or 500 slices (0.625 mm 500 slice) for 4D imaging. Volume Helical Shuttle provides data to support up to 140 mm of coverage repeatability within 3.2 seconds.* Dynamic Pitch Reconstruction extends Z-coverage and improves temporal sampling by utilizing acquired scan data during table acceleration and de-acceleration.

Volume Helical Shuttle

CT Performance & Specifications

CT Performance			
Display field of view	70 cm with WideView		
Scan field of view	50 cm diagnostic		
Minimum slice thickness	0.625 mm		
Scan modes	Axial: axial slices acquired simultaneously with each 360° rotation, with the time between scans set by the user-selected interscan delay (ISD) or intergroup delay (IGD).		
	Helical: continuous 360° scanning with table incrementation and no interscan delay		
	Cine: contiguous axial slices acquired simultaneously with each 360° rotation. Half-scan imaging and segmented reconstruction is supported with acquisitions times of 0.65 times that of the scan speed.		
	128 slices per Rotation [‡] - The overlapped reconstruction feature enables 128 slices per rotation in Axial scanning modes and delivers improved Z-axis visualization performance relative to non-overlapped reconstruction.		

CT Performance				
Pitch	Helical Pitch (nominal): 0.516 to 1.531			
	Cardiac Pitch: 0.16 to 0.35			
Rotational speeds (360°)	Axial: 0.35 [‡] , 0.4 [‡] , 0.5 [‡] , 0.6 [‡] , 0.7, 0.8, 0.9, 1.0, and 2.0 seconds Helical: 0.35 [‡] , 0.4 [‡] , 0.5 [‡] , 0.6 [‡] , 0.7, 0.8, 0.9, 1.0 seconds Cardiac application [‡] : 0.35, 0.375, 0.40, 0.425, 0.45, 0.475, and 0.50. [‡]			
HU scale	-31,743 to 31,743			
Reconstruction matrix	512 x 512			
Display matrix	1024 x 1024			

X-ray tube	
Performix 40 Plus X-ray Tube	A liquid bearing tube that has a capability of less-wear of Tube bearing and is enabled up to 0.35 second rotation speed with a routine scan
Thermal ratings	The maximum anode heat capacity: 5.0 MJ (7.0MHU)
Distance of focal spot to detector	95 cm
Small focal spot	0.9 x 0.7 per IEC 60336/2005
Large focal spot	1.2 x 1.1 per IEC 60336/2005
Maximun power	48 kW, upgradeable to 72 kW
mA	10 to 400 mA, 5 mA increments Upgradeable to 600 mA

CT Performance & Specifications

Clarity Detector	
Number of elements	54,272
Number of rows	64 rows of 0.625 mm thickness at isocenter - 32 slices per rotation, up to 128 slices per rotation‡
Detector coverage	up to 40 mm in axial mode up to 61 mm/rotation using IQE (1.531:1 pitch)
Perfusion coverage	120 mm with Volume Helical Shuttle [‡]
Absorption efficiency	98%
Special Resolution	0.28 mm

Data Acquisition system		
Volara XT Digital DAS	Clarity Detector and Data Acquisition System	
	 Designed as analog cable free between ASIC and Diode, and has a capability to reduce electronic noise. Designed for less heat generation, up to 90%, compared with previous GE technology and all in one DAS / Detector. It has capability to reduce electronic noise. Designed for less floor-noise, up to 44% compared with previous GE technology and it has capability to reduce electronic noise. Optimized collimator with ability to reduce scatter noise. 	

Image quality				
Low-contrast detectability (CATPHAN 20 cm) – helical				
Reconstruction mode	Object size	% contrast	Dose Level (mGy TDIvol) 10 mm slice	
Standard Algorithm with ASiR	5 mm	0.32%	5.69 mGy	
CTDI expressed in mGy/100 mA on CTDI head and body dose reference phantoms		Axial head: 16.7 mGy/100 mAs		
		Axial body: 8.7 mGy/100 mAs		
		Helical head: 17.0 mGy/100 mAs		
		Helical body: 8.8 mGy/100 mAs		
Noise		Axial: 0.43% at 11.0 mGy CTDIvol with ASiR Reconstruction Algorithm		
		Helical: 0.43% at 11.1 mGy CTDIvol with ASiR Reconstruction Algorithm		

Discovery MI DR Workspace

Innovative and ergonomic working environment designs to ease the operator's workflow in daily clinical and research studies. It features powerful and expandable GE PET reconstruction technology that streamlines PET/CT workflow by handling massive PET/CT data sets with ease. Everything you need at your fingertips--an intuitive quantitative workflow that fully integrates into your daily routine.

PET/CT Advanced Clinical Applications

PET/CT Workflow Solutions

Q.Flow Ease of use and automation • Common PET and CT user interface • Up to 3 PET prospective reconstructions • Up to 3 PET prospective reconstructions • Up to 8 list mode record/replay Enhanced Graphic Rx • Edit Scan Parameters on Scout View • One Click Hybrid Protocol Set-up from CT • Auto Direct Multi-Planar Reformats		Motion Match [‡]	Ideal for radiation the precise motion define optimize treatment phased-matched PE and fusion on the co Workstation, which to noise ratio of more over a static acquisi	nition is requi planning. Ena T and CT reco onsole and Ad can improve ving lesions u	red to Ibles Instruction Vantage the contrast
	 PET Copy PMR to copy reconstruction parameters Flexibility Variable acquisition time per bed Multi-bed Gated PET 		Enables a step-and- performing biopsies procedures. A highly presents a set of the in three viewports.	and other int functional in	terventional nage display
	Cardiac and respiratory PET gatingIntegrated PET gating	Clinical Protoco	ols	ASiR or ASiR-V‡	Q.AC [‡]
	 Networking and compatibility DICOM HIS/RIS DICOM PET RAW Auto-store and auto-networking 	Oncology Whole-body PE⁺ Q.Static PET/CT 		Yes Yes	Yes Yes
ViP replay Volume Interface Protocol (ViP) is an intuitive and comprehensive PET list mode prospective reconstruction solution. Provides integrated list mode	 2 meter scan whole-body PET/CT Cardiology ⁸²Rb/ Ammonia stress/rest protocol FDG Gated PET/CT 		Yes Yes Yes	Yes Yes Yes	
processing for generating a variety of scan types (static, dynamic, gated) from a single acquisition.		NeurologyAmyloid PET imagingBrain PET		Yes Yes	Yes Yes
RadRx	 Create your own PET/CT protocol from any CT protocol. Automated CTAC creation from CT acquisitions, including contrast enhanced, perfusion and gated CTs. Integrated Average Cine CT protocol for improved attenuation correction. 				
ACQC‡	Attenuation Correction Quality Control ensures proper cardiac registration between PET and CT.				
PET/CT pediatric protocols	Default protocols specifically designed for FDG oncology pediatric exams based on Broselow-Luten Pediatric System [®] , which is designed to minimize CT radiation exposure in PET/CT attenuation correction to meet ALARA guidelines.				
Remote table retract	Increase technologist shielding from the patient by allowing the use of operator console-based controls for bed retraction and lowering out of the gantry at the end of the exam.				

Discovery MI DR Workspace

PET/CT Workflow	Solutions	PET/CT Workflow	Solutions	
Xtream Injector‡	that starts the injection process in synchronization with "Start Scan"		Ensures that the relevant images and reports can be visualized by the referrals in a PC friendly format (MPEG, AVI, etc.)	
	to simplify the enhancement exam workflow. The Enhanced Xtream Injector supports injector parameters that are zzentered on console.	Compatible peripherals	 DVD-R: Creation of interchange media of PET and CT image data with viewer option. USB 2.0 external hard drive: ViP data 	
Direct MPR with Auto-Batch	Automatic real-time direct reconstruction and transfer of fully-corrected multiplanar images, in any plane. Up to 10 fps transfer speed of images, in real-time during acquisition, to up to four different destinations.	Direct Connect	offline storage. AW VolumeShare 5 supports a direct connection between AW VolumeShare 2, 3 or 4 workstations. This feature requires a Gigabit Network between the AW's and HP XW8200 (minimum hardware	
Auto Transfer	Distribute images where and when you need them.		requirement). Post processing can be done on image residing on Direct Connect	
Exam Split‡	Allows multi-anatomic exams to be read in separate anatomic sections. This allows specialists to review only those images needed for a given requisition.		linked systems by launching applications without having to DICOM transfer the exam to the AW.	
SmartPrep	Enables intermittent monitoring of IV	Other		
	contrast enhancement in an area of interest. The contrast flow is monitored by low-dose scans until the contrast enhancement reaches the preferred point and then the user initiates the scan prescription.	Acquisitions	 Static, gated, dynamic Multi-static, multi-gated, multi-dynami Real time list mode coincidence data acquisition for clinical and research applications that provides the opportunity for principal component 	
AWE connection [‡]	The software based AW Server client on the CT console allows access to applications hosted on an AW Server, right from the CT console for improved workflow and productivity.		analysis of the PET raw data (i.e., sinogram) and therefore facilitates user development of advanced motion corrections that eliminate the need of an external respiratory device.	
PET Data Storage	2.4 TB List Data Storage, 1.2 TB Sinogram Data Storage and Netwark Storage Capability. Storage space is amplified by utilizing GE's patented sinogram and list compression technology to shrink the data size while it resides on the scanner. Data is backed up in a RAID configuration to reduce the potential for lost data and system downtime in the event of a storage disk failure.	Image matrix sizes Optional post-processing applications [‡]	 128 x 128, 192 x 192, 256 x 256, 384 x 384 CT Perfusion 4D CardIQ Express Autobone Express Advanced Vessel Analysis CardIQ Plus Dynamic VUE Motion VUE CardIQ VUE DentaScan CT Perfusion 4D Multi Organ 	
PET Exam Report	PET Exam Report highlights key aspects from the PET scan including injected dose, uptake time, patient demographics and other important information that is intended to be passed along to reading physicians and streamline their workflow. The PET Exam Report is a DICOM screen capture that can be networked to any device accepting DICOM images and archived to PACS or other storage device.		 CardEP Advantage DentaScan 	

Siting requirements

PET/CT Gantry and System						
Hei	ght	Wi	dth	De	pth	Weight
cm	inch	cm	inch	cm	inch	kg
193	76	224	88	156	62	3823
107	42	66	26	345	136	1049
	Hei cm 193	Height cm inch 193 76	Height Wi cm inch cm 193 76 224	Height With cm inch cm inch 193 76 224 88	Height With De cm inch cm inch cm 193 76 224 88 156	Height With Depth cm inch cm inch cm inch 193 76 224 88 156 62

Gantry Depth including the back trailer is 265 cm.

Patient Table	
Maximum load	500 lbs (226 kg)
Maximum horizontal scannable range	Standard 170 cm with up to full 200 cm‡
Vertical scannable range	8 to 205 mm below isocenter
Maximum horizontal speed	100 mm/sec

Patient Table Compatible[‡]

IV Pole integrated at the foot-end of the table prevents IV lines from becoming crossed and tangled, and ensures that the lines stay securely in place on the patient.

2 m table extender: Carbon fiber table extender to enable full 2 m scan range for complete head to toe studies.

Radiation treatment planning flat table overlay securely lock into the PET/CT.

GE integration kit for Varian respiratory patient monitor composed of a table-mounting bracket with connector to support the RPM device; allows respiratory gating with and without radiation treatment planning flat table overlay.

Siting Requirements

Scan room

Minimum scan room size	3912 mm x 7772 mm 154 in x 306 in			
Scan room temperature range	18° C (64° F) – 26° C (79° F)			
Scan room cooling requirements	Air cooled, recommended 55,414 BTU/hr with heavy CT utilization			
Control room				
Minimum control room size	2743 mm x 3912 mm 108 in x 154 in			
Control room temperature range	18° C (64° F) – 26° C (79° F)			
Control room cooling requirements	Air cooled Recommended 3625 BTU/HR			
Power requirements	150 kVA maximum 30 kVA average			
Equipment room				
Equipment Room	Not required. Heat and noise output for Power Distribution Unit and computer hardware are low enough to allow inclusion in the patient scanning suite with the table and gantry.			

DICOM Conformance Standards

PET sinogram data can be saved as a DICOM file.

DICOM storage service class

Service Class User (SCU) for image send

Service Class Provider (SCP) for image receive

DICOM query/retrieve service class

DICOM storage commitment class push

DICOM modality work list

DICOM modality performed procedure step

DICOM print

Filming Protocol

3M-952 standard

Supported film and hardcopy devices:

- A DICOM print interface is standard on the system
- DICOM basic grayscale and color print via ethernet
- Sterling/AGFA Helios via ethernet
- Post script level 2 printer via TCP/IP ethernet

HIPAA

Password protected user login and authentification

Image annonimization tool

Product network filters restricts access to scanner system by IP address, services type (IE ftp, telnet) and DICOM port number

User configurable

Standard, Selectable Items

Language selectable keyboard ConnectPro HIS/RIS interface with performed procedure step

DICOM storage service class

Regulatory Compliance

This product is designed to comply with applicable standards under the Radiation Control for Health and Safety Act of 1968.

Laser alignment devices contained within this product are appropriately labeled according to the requirements of the Center for Devices and Radiological Health.

This product complies with laser standard IEC 60825-1:2007-03. Rear PET laser is an IEC Class 1M laser product. Laser Radiation - Do not view directly with optical instruments. Do not expose users of telescope optics. Max power: 0.39 mW. Wavelength: 635 nm.

Discovery MI DR has been designed to follow PET/CT international standards: ACR, ACRIN, EARL, QIBA

Discovery MI DR system meets MITA XR-29-2013 Smart Dose standards.

Imagination at work

Product may not be available in all countries and regions.

© 2017 General Electric Company – All rights reserved.

GE Healthcare reserves the right to make changes in specifications and features shown herein, or discontinue the product described at any time without notice or obligation. Contact your GE Healthcare representative for the most current information.

GE, GE monogram, Imagination at work, Discovery, ASiR, ASiR-V, Performix, Revolution, OptiDose, 5-Beat Cardiac and SmartScore are trademarks of General Electric Company.

GE Healthcare, a division of General Electric Company. GE Medical Systems, Inc., doing business as GE Healthcare.

DOC1846138 Rev.2