

Final Exam

Continuing Education Course #462 Piping and Instrumentation Diagrams

 a. Edge of pavement b. Walls c. Piping and communications
 2. P&IDs illustrate the relationship of which items? a. Piping, instrumentation, equipment, and controllers b. Piping, instrumentation, vehicles, and controllers c. Piping, instrumentation, equipment, and power supplies
3. P&IDs convey a. Power & current b. Interconnectivity c. Flows & pressures
4. During which phase are P&IDs helpful? ○ a. Planning ○ b. Demolition ○ c. Design
 5. Which of the following is NOT a reason for having P&IDs? a. Helps coordinate instrumentation, controls, and wiring b. Provides details needed for programming c. Ensure proper wire sizing
6. Which diagram is normally made before a P&ID? a. Process flow diagram b. Wiring diagram c. Instrument schematic
7. Which are NOT shown in a block flow diagram? a. Instrument tags b. Processes as rectangles or circles c. Lines for the flow paths
8. What does PFD stand for? a. Pipe flow diagram b. Process field diagram

 a. Block flow diagram b. Process flow diagram c. Logic diagram
 10. What are instrument schematics? a. Details for particular instruments b. Control logic details for instruments c. A type of P&ID
11. Which is NOT shown in a wiring diagram? ○ a. Terminal blocks ○ b. I/O Cards ○ c. Piping
12. Which is NOT a type of logic diagram? ○ a. Ladder ○ b. Relay ○ c. Formal
13. Which is the most common industry standard for P&IDs? a. ANSI/ISA 5.1 b. IEC 60617 c. PIC001
 14. Why are letter designations used in P&IDs? ○ a. Comply with regulations ○ b. Conserve space ○ c. Cryptography
 15. Which is NOT a common instrument function designation for the letter A? a. Analysis b. Alarm c. Air fan
16. What does HOA normally stand for? a. Hand/On/Auto b. Hand/Off/Auto c. High/Off/Auto
17. What is an O/O switch? a. On/Off switch b. Open/Off switch c. Or/Out switch
18. Which item would NOT be shown with a symbol on a P&ID? ○ a. Instrument ○ b. Valve ○ c. Clarifications
19. What does a circle with a solid horizontal line represent?

\circ	a. Field mounted, normally accessible b. Primary location, normally accessible c. Primary location, normally inaccessible
0 a	How does a control loop maintain a process condition? a. Adjusting devices b. Recording data c. Operator makes adjustments
0 a	What helps depict control loops in a P&ID? a. Flow direction arrows b. Communications paths c. Instrument functions
() a	What does cascade control mean? a. Controlling multiple parameters b. Equalizing flow in multiple pipes c. Two controllers for a single control loop
() a	Which is an example of flow pacing? a. Adjusting pump speed to achieve a set dosage b. Making slow changes to a process c. Keeping the flow rate the same
() a	What is feedforward control? a. Using future projections for control b. Using upstream readings for control c. Using downstream readings for control
() a	What is feedback control? a. Using historic readings for control b. Using upstream readings for control c. Using downstream readings for control