Final Exam ## Continuing Education Course #462 Piping and Instrumentation Diagrams | a. Edge of pavement b. Walls c. Piping and communications | |--| | 2. P&IDs illustrate the relationship of which items? a. Piping, instrumentation, equipment, and controllers b. Piping, instrumentation, vehicles, and controllers c. Piping, instrumentation, equipment, and power supplies | | 3. P&IDs convey a. Power & current b. Interconnectivity c. Flows & pressures | | 4. During which phase are P&IDs helpful? ○ a. Planning ○ b. Demolition ○ c. Design | | 5. Which of the following is NOT a reason for having P&IDs? a. Helps coordinate instrumentation, controls, and wiring b. Provides details needed for programming c. Ensure proper wire sizing | | 6. Which diagram is normally made before a P&ID? a. Process flow diagram b. Wiring diagram c. Instrument schematic | | 7. Which are NOT shown in a block flow diagram? a. Instrument tags b. Processes as rectangles or circles c. Lines for the flow paths | | 8. What does PFD stand for? a. Pipe flow diagram b. Process field diagram | | a. Block flow diagram b. Process flow diagram c. Logic diagram | |---| | 10. What are instrument schematics? a. Details for particular instruments b. Control logic details for instruments c. A type of P&ID | | 11. Which is NOT shown in a wiring diagram? ○ a. Terminal blocks ○ b. I/O Cards ○ c. Piping | | 12. Which is NOT a type of logic diagram? ○ a. Ladder ○ b. Relay ○ c. Formal | | 13. Which is the most common industry standard for P&IDs? a. ANSI/ISA 5.1 b. IEC 60617 c. PIC001 | | 14. Why are letter designations used in P&IDs? ○ a. Comply with regulations ○ b. Conserve space ○ c. Cryptography | | 15. Which is NOT a common instrument function designation for the letter A? a. Analysis b. Alarm c. Air fan | | 16. What does HOA normally stand for? a. Hand/On/Auto b. Hand/Off/Auto c. High/Off/Auto | | 17. What is an O/O switch? a. On/Off switch b. Open/Off switch c. Or/Out switch | | 18. Which item would NOT be shown with a symbol on a P&ID? ○ a. Instrument ○ b. Valve ○ c. Clarifications | | 19. What does a circle with a solid horizontal line represent? | | \circ | a. Field mounted, normally accessible b. Primary location, normally accessible c. Primary location, normally inaccessible | |---------|--| | 0 a | How does a control loop maintain a process condition? a. Adjusting devices b. Recording data c. Operator makes adjustments | | 0 a | What helps depict control loops in a P&ID? a. Flow direction arrows b. Communications paths c. Instrument functions | | () a | What does cascade control mean? a. Controlling multiple parameters b. Equalizing flow in multiple pipes c. Two controllers for a single control loop | | () a | Which is an example of flow pacing? a. Adjusting pump speed to achieve a set dosage b. Making slow changes to a process c. Keeping the flow rate the same | | () a | What is feedforward control? a. Using future projections for control b. Using upstream readings for control c. Using downstream readings for control | | () a | What is feedback control? a. Using historic readings for control b. Using upstream readings for control c. Using downstream readings for control |