
Finite State Machines
Mark A. Strain, P.E.

PDH305

2 Hours

Course Material and Final Exam

Introduction
An electronic lock, a vending machine, a subway turnstile, a control panel for a microwave oven,
a spell checker, a text search application, and the core of a microprocessor all embody a common
element. Their behavior can be modeled using a finite state machine. Inputs to the system from
the real world may affect the state of the system and possibly the output of the system. The
behavior of the system is predetermined from its design. All possible outputs and states are
designed into the system given any possible input. Therefore, the system is very predictable
(assuming all possible state/input/output combinations have been designed into the system). A
state machine is one of the most common building blocks of modern digital systems [1].

Description of a State Machine
A finite state machine is a model used to describe the behavior of a real world system. It is a
mathematical abstraction used to design digital logic or computer programs [3]. It is a model of
behavior composed of a finite number of states, transitions, actions, inputs and outputs [3].
The National Institute of Standards and Technology (NIST) defines a finite state machine as

A model of computation consisting of a set of states, a start state, an input
alphabet, and a transition function that maps input symbols and current states to a
next state. Computation begins in the start state with an input string. It changes to
new states depending on the transition function [2].

Finite state machines are finite in that the number of states used to describe a particular system is
limited, i.e., not infinite. The term “finite” is understood since an infinite state machine would be
impractical (perhaps even impossible) to model. Hence, they are usually referred to as state
machines, also as finite state automaton.
The output of a state machine depends on the history of the system (or current state of the
system). However implemented, whether discrete hardware or computer program, a state
machine has a finite amount of internal memory to implement the system.
State machines are used to solve a large number of problems. They are used to model the
behavior of many different kinds of systems, for example:

• A user interface with a keypad and display (like a microwave oven controller)
• An electronic lock containing a keypad
• A communications protocol that parses the symbols as they are received
• A program that performs a text search (or searches for patterns in strings)

Once the model or state machine is established, the behavior of the system is better understood
simply by studying the state diagram.

State Machine Model
Components of a State Machine
A state machine is composed of two or more states. A state stores information about the past and
reflects changes from the start of the system to the present state. The current state is determined
by past states of the system.

A transition indicates a change from one state to another.

An output, also called an action is a description of an activity that is to be performed as a result
of an input and change of state. An output can be depicted either on the transition (the arrow) or
within the state.

State Diagram
A state diagram describes a state machine using a graphical representation.

S
0

S̀
0

S
1

1

S̀
0

S
1

1 / 0

1

S
0

0
S

1

1

State Table
A state transition table (or state table) describes a state machine in a tabular format.

Present State Next State
x = 0 x = 1

S0 S0 S1
S1 S0 S1

(where x is the input)
Figure 6 - state table

This simple model exemplifies a door lock that embodies two states: LOCKED (S1) and
UNLOCKED (S0) and two possible inputs: LOCK (1) and UNLOCK (0). If the door is in the
UNLOCKED state and an input of LOCK is presented, the state machine progresses to the
LOCKED state. If an input of LOCK is presented to the machine in the LOCKED state the
machine stays in the LOCKED state.
 where
 S0 is unlocked (state)
 S1 is locked (state)
 x = 0 to unlock (input)
 x = 1 to lock (input)
To summarize, a state machine can be described as:

• A set of possible input events
• A set of possible output events
• A set of states
• An initial state
• A state transition function that maps the current state and input to the next state
• A function that maps states and input to output

Each bubble in a state diagram represents a state, and each arrow represents a transition from one
state to another. Inputs are shown next to each transition arrow and outputs are shown under the
inputs on the transitions or inside the state bubble.

S
0

S
1

1

0

0 1

Block Diagram
Memory is used to store the current state of the state machine. When developing a machine using
a hardware architecture, flip-flops are used as the memory device. The number of flip-flops
required is proportional to the number of possible states in the state machine.

of states ≤ 2x
(where x is the number of flip-flops required for the state machine)

or
x ≥ ln (# of states) / ln 2

Now, round x up to the nearest integer.
A state machine can be viewed generally as consisting of the following elements: combinational
logic, memory (flip-flops or registers), inputs and outputs.

Figure 7 - general block diagram of a state machine

Memory is used to store the state of the system. The combinational logic can be viewed as two
distinct functional blocks: a next state decoder and an output decoder [4].

Figure 8 - block diagram of a state machine showing the next state and output decoders

The next state decoder computes the machine’s next state and the output decoder computes the
output.

Mealy and Moore Machines
Two architectures for state machines include Mealy machines and Moore machines. Each is
differentiated by their output dependencies. A Mealy machine’s output depends on the input and
the current state. A Moore machine’s output depends only on the current state.

Combinational
Logic Memory

Output(s)

Input(s)

Next State
Decoder Memory Output

Decoder Output(s)Input(s)

Mealy Machine
The advantage of a Mealy machine is in its implementation. A Mealy machine often results in a
reduced number of states. The output of a Mealy machine depends on the input and the current
state. Therefore the output will be coupled with the input and depicted on the transition between
states as shown in Figure 3. The following example is a sequence detector for the sequence {1 0
1}. It is implemented with a Mealy machine.

Figure 9 - state diagram of {1 0 1} sequence detector implemented with a Mealy machine

Present State Next State
x = 0 x = 1

Output
x = 0 x = 1

S0 S0 S1 0 0
S1 S2 S1 0 0
S2 S0 S1 0 1

(where x is the input)
Figure 10 - state table for above sequence detector

This state machine may be implemented in a number of ways. Consider a hardware
implementation using combinational logic and D flip-flops. Since there are three states: S0, S1
and S2, two bits will be required to encode the states thus requiring two D flip-flops. Let the
present state be represented by Q1Q2 and the next state as the flip-flop equations D1D2. The
output will be represented as the variable Z. The state table now encoded in binary becomes:

S̀
0

S
1

1 / 0

S
2

1 / 00 / 0

0 / 0

1 / 1

0 / 0

Q1Q2 D1D2
x = 0 x = 1

Z
x = 0 x = 1

0 0 0 0 0 1 0 0
0 1 1 0 0 1 0 0
1 0 0 0 0 1 0 1

(where x is the input,
Q1Q2 is the present state,

D1D2 is the next state,
and Z is the output)

Figure 11 - state table encoded in binary

For D flip-flops, the characteristic equation translates to Q+ = D.
In another form the state table becomes

Q1Q2x D1 D2 Z
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 0 0 0
1 0 1 0 1 1
1 1 0 - - -
1 1 1 - - -

Figure 12 - another form of state table

Using Karnaugh maps to reduce the minterms and simplify the equations:

Figure 13 - Karnaugh map of D1, D2, and Z equations

The implementation of the sequence detector {1 0 1} using a Mealy machine architecture
becomes

 0 1 x 0

 0 0 x 0

 00 01 11 10

0

1

Q
1
Q

2

x

 0 0 x 0

 1 1 x 1

 00 01 11 10

0

1

Q
1
Q

2

x

 0 0 x 0

 0 0 x 1

 00 01 11 10

0

1

Q
1
Q

2

x

D
1

D
2

Z

D
1
 = x'Q

2

D
2
 = x

Z = xQ
1

Figure 14 - hardware implementation of Mealy machine

Figure 15 - block diagram of Mealy machine

Moore Machine
The advantage of a Moore machine is a simplification of behavior. The output of a Moore
machine depends only on the current state. Therefore, the output is coupled with a state and is
depicted within the bubble of the state as shown in Figure 4. The following example is the same
{1 0 1} sequence detector as shown above but implemented here as a Moore machine.

D Q

D Q

Q
1

Q
2

Z

CLK

X

Next State
Decoder Memory Output

Decoder Output(s)Input(s)

Figure 16 - state diagram of {1 0 1} sequence detector implemented with a Moore machine

Present State Next State
x = 0 x = 1

Output

S0 S0 S1 0
S1 S2 S1 0
S2 S0 S3 0
S3 S2 S0 1

(where x is the input)
Figure 17 - state table for above sequence detector

As in the other example consider a hardware implementation using combinational logic and D
flip-flops. Here there are four states: S0, S1, S2 and S3, and still only 2 bits are needed to define
all of the states. This will require two D flip-flops. The present state will be represented as Q1Q2
and the next state will be represented by the flip-flop equations D1D2. The output will be
represented by the variable Z. The state transition table now encoded in binary becomes

1

S
0

0
S

1

0

S
2

0
S

3

1

0 1

0

0
0

1

1

Q1Q2 D1D2
x = 0 x = 1

Z

0 0 0 0 0 1 0
0 1 1 0 0 1 0
1 0 0 0 1 1 0
1 1 1 0 0 0 1

(where x is the input,
Q1Q2 is the present state,

D1D2 is the next state,
and Z is the output)

Figure 18 - state table encoded in binary

or simply

Q1Q2x D1 D2 Z
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 0 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 0 0 1

Figure 19 - another form of state table

Using Karnaugh maps to simplify the equations:

Figure 20 - Karnaugh map of D1, D2, and Z equations

The implementation of the {1 0 1} sequence detector using a Moore machine architecture
becomes

 0 1 1 0

 0 0 0 1

 00 01 11 10

0

1

Q
1
Q

2

x

 0 0 0 0

 1 1 0 1

 00 01 11 10

0

1

Q
1
Q

2

x

 0 0 1 0

 0 0 1 0

 00 01 11 10

0

1

Q
1
Q

2

x

D
1

D
2

Z

D
1
 = x'Q

2
 + xQ

1
Q

2
'

D
2
 = xQ

1
' + xQ

2
'

Z = Q
1
Q

2

Figure 21 - hardware implementation of Moore machine

Figure 22 - block diagram of Moore machine

Implementation
Hardware Implementation
A disadvantage of the pure hardware implementation of the state machine using hardwired gates
and flip-flops is that the design is difficult to modify once it is committed to copper. Another
drawback of the discrete hardware implementation is that it requires significant circuit board
area. It is also difficult to debug if there is anomalous behavior. The greatest advantage of a pure
hardware implementation is that a hardware realization is very fast compared to a software
implementation.
Another form of hardware implementation uses a schematic capture program or a Verilog
implementation to produce a binary file which is loaded onto a field programmable gate array
(FPGA). This architecture typically requires less board space. However, the schematic capture
architecture is sometimes difficult to debug. It is easier to modify the design after it has been
committed to copper. To modify, the schematic or the Verilog firmware is modified and rebuilt
and the FPGA is reprogrammed.

D Q

D Q

Q
1

Q
2

Z

CLK

X

Next State
Decoder Memory Output

Decoder Output(s)Input(s)

The following state table is the Mealy implementation of the {1 0 1} sequence detector

Present State Next State
x = 0 x = 1

Output
x = 0 x = 1

S0 S0 S1 0 0
S1 S2 S1 0 0
S2 S0 S1 0 1

(where x is the input)
Figure 23 - {1 0 1} sequence detector example

Here is an example of a Verilog realization of the above state machine

module mealy_fsm (clk, reset, out)

input clk;
input reset;
output out;

reg [1:0] state;
reg out;

parameter S0 = 2'd0,
 S1 = 2'd1,
 S2 = 2'd2;

always @(posedge clk)
begin
 if (reset) // this is sync reset, not async reset
 begin
 state <= S0;
 out <= 1'b0;
 end
 else
 begin
 case (state)
 S0:
 if (x == 1'b1)
 begin
 state <= S1;
 out <= 1'b0;
 end
 else
 begin
 state <= S0;
 out <= 1'b0;
 end
 S1:
 if (x == 1'b1)
 begin
 state <= S1;
 out <= 1'b0;
 end
 else

 begin
 state <= S2;
 out <= 1'b0;
 end
 S2:
 if (x == 1'b1)
 begin
 state <= S1;
 out <= 1'b1;
 end
 else
 begin
 state <= S0;
 out <= 1'b0;
 end
 default:
 begin
 state <= S0;
 out <= 1'b0;
 end
 endcase
 end
end

endmodule

Software Implementation
State machines may also be implemented in software using the C programming language. The
code is compiled with a compiler resulting in a binary file which is loaded onto a microprocessor
or microcontroller.
A state machine implementation using a software architecture is significantly easier to debug
than a hardware implementation using discrete flip-flops and combinational logic. Software is
easier to modify than hardware. Simply modify the code, recompile and reload the binary on the
microprocessor. Also, the software implementation may be more flexible than the hardware
design; it may be ported to different hardware platforms.
The main disadvantage of the software implementation is that it may be slower than the
hardware implementation.
The following state table is the Mealy implementation of the same {1 0 1} sequence detector
shown above.

Present State Next State
x = 0 x = 1

Output
x = 0 x = 1

S0 S0 S1 0 0
S1 S2 S1 0 0
S2 S0 S1 0 1

(where x is the input)
Figure 24 - {1 0 1} sequence detector example

Here is an example of a C programming language realization of the above state machine

typedef enum
{
 S0,
 S1,
 S2
} StateType;

void MealyFSM(StateType *state,
 int x,
 int *out)
{

 switch (*state)
 {
 case S0:
 if (x == 0)
 {
 *state = S0;
 *out = 0;
 }
 else
 {
 *state = S1;
 *out = 0;
 }
 break;

 case S1:
 if (x == 0)
 {
 *state = S2;
 *out = 0;
 }
 else
 {
 *state = S1;
 *out = 0;
 }
 break;

 case S2:
 if (x == 0)
 {
 *state = S0;
 *out = 0;
 }
 else
 {
 *state = S1;
 *out = 1;
 }
 break;

 default:

 *state = S0;
 *out = 0;
 break;

 }
}

Summary
A state machine is a model used to describe the behavior of a real world system. State machines
are used to solve a large number of problems. They are used to model the behavior of various
types of devices such as electronic control devices, parsing of communications protocols and
programs that perform text or pattern searches.
State machines may be described using a state diagram and a state table. A state diagram is
composed of states, inputs, outputs and transitions between states. A state table describes a state
machine with the present state and input on the left and the next state and output on the right.
State machines may be implemented using either a hardware architecture or a software
architecture. The advantage of a hardware implementation is that it operates very fast, but it is
difficult to modify and usually requires more circuit board space. The advantage of a software
implementation is that it is easier to design and modify, but can be slower than the hardware
equivalent.

References

1. “A New Paradigm for Synchronous State Machine Design in Verilog.” visited 1
November 2010 <http://ideaconsulting.com/smv.pdf>

2. “Finite State Machine – National Institute of Standards and Technology.” 12 May 2008
<http://xw2k.nist.gov/dads/HTML/finiteStateMachine.html>

3. “Finite-State Machine – Wikipedia, the Free Encyclopedia.” 8 July 2010
<http://en.wikipedia.org/wiki/Finite-state_machine>

4. “State Machine Design.” June 1993
<http://www.mil.ufl.edu/4712/docs/PLD_Basics/StateMachineDesign.pdf>

5. “State Machines.” 8 September 2010
<http://www.xilinx.com/itp/xilinx4/data/docs/xst/hdlcode15.html>

6. “UML Tutorial: Finite State Machines.” June 1998
<http://www.objectmentor.com/resources/articles/umlfsm.pdf>

http://ideaconsulting.com/smv.pdf
http://xw2k.nist.gov/dads/HTML/finiteStateMachine.html
http://en.wikipedia.org/wiki/Finite-state_machine
http://www.mil.ufl.edu/4712/docs/PLD_Basics/StateMachineDesign.pdf
http://www.xilinx.com/itp/xilinx4/data/docs/xst/hdlcode15.html
http://www.objectmentor.com/resources/articles/umlfsm.pdf

1

Final Exam – Finite State Machines

1. A state machine is used for all of the following purposes except ____________.
a. to describe the behavior of a real world system
b. to model a random event
c. to describe the relationship between the inputs and outputs of a system
d. to ensure the predictability of a control system

2. A state machine is composed of all of the following except ____________.
a. a set of states
b. a set of possible input events
c. a function that maps current state and input to next state
d. an instruction set

3. A hardware implementation of a state machine containing 19 states will require
____________ flip-flops.

a. 3
b. 4
c. 5
d. 6

4. Two state machine architectures, Mealy and Moore machines, are differentiated by
____________.

a. their output dependencies
b. the number of inputs
c. the number of states
d. their initial state

5. The architecture whose output depends both on input and current state is ____________.
a. Mealy machine
b. Moore machine
c. both Mealy and Moore machines
d. neither Mealy nor Moore machines

6. A Mealy machine often results in fewer states than a Moore machine.
a. True
b. False

2

7. For the state machine described by the above state diagram, if the current state is S2, an

input of 1 would generate a next state of ____________.
a. S0
b. S1
c. S2
d. S3

8. For the state machine described by the above state diagram, if the current state is S3, an

input of 1 would generate a next state ____________ and output of ____________.
a. next state S0, output 1
b. next state S2, output 0
c. next state S0, output 0
d. next state S1, output 1

9. The state machine described is a ____________.

a. Moore machine
b. Mealy machine
c. a Mealy and Moore machine hybrid
d. neither a Mealy nor Moore machine

10. A state machine may be implemented using ____________.

a. flip-flops and combinational logic
b. a microprocessor programmed with a software implementation of a state machine
c. an FPGA loaded with a Verilog implementation of a state machine
d. all of the above

S̀
0

S
1

1 / 0

S
2

1 / 0

0 / 0

1 / 0
0 / 0 0 / 0

S
3

1 / 0

0 / 1

3

11. A disadvantage of a hardware implementation of a state machine using flip-flops and
discrete logic is ____________.

a. that the implementation requires significant circuit board space
b. that the design is difficult to modify
c. the design is difficult to debug
d. all of the above

12. A pure hardware implementation of a state machine is often slower than a software

implementation.
a. True
b. False

13. The main advantage of a software implementation of a state machine over a hardware

implementation is ____________.
a. the software implementation is always faster than a hardware implementation
b. the software implementation requires fewer states than a hardware

implementation
c. the software implementation is more versatile, i.e., easier to modify than a

hardware implementation
d. all of the above

14. The component of a state machine, regardless of implementation, that stores the current

state of the system is ____________.
a. the state diagram
b. memory
c. combinational logic
d. a transition

15. A state machine would best be used to describe all of the following except

____________.
a. a household appliance controller
b. a communications protocol that parses symbols as they are received
c. a fractal geometry algorithm
d. an electronic garage door opener

	Finite State Machines.pdf
	Introduction
	Description of a State Machine
	State Machine Model
	Components of a State Machine
	State Diagram
	State Table
	Block Diagram

	Mealy and Moore Machines
	Mealy Machine
	Moore Machine

	Implementation
	Hardware Implementation
	Software Implementation

	Summary
	References

	Finite State Machines Exam wo answers.pdf

