Final Exam ## Continuing Education Course #532 Electrical Power Part III: Transformers | 1. What term in the transformer model represents the eddy current and hysteresis losses?
\bigcirc a. B_c \bigcirc b. G_c \bigcirc c. X_p \bigcirc d. X_s | |---| | 2. What terms represent flux leakage, that is, flux that is NOT mutual?
\bigcirc a. B_c
\bigcirc b. G_c
\bigcirc c. X_p and X_s
\bigcirc d. X_s alone | | 3. What expression represents the turns ratio, a , when the turns ratio is defined from the primary to the secondary?
\bigcirc a. I_p/I_s \bigcirc b. N_s/N_p \bigcirc c. V_p/V_s \bigcirc d. $\sqrt{Z_s/Z_p}$ | | 4. What type of power is used as a rating for transformers? ○ a. S ○ b. P ○ c. Q ○ d. Depends on transformer size | | 5. What type of loss results from cyclic changes in the magnetic state of the core? a. circulating currents b. eddy current c. hysteresis d. reactive | | 6. A 500 kVA rated, 200 kg iron-core transformer has a coupling coefficient of 4×10^{-4} in a 1.4 T peak magnetic field. | | What is most nearly the eddy current power loss? a. 3.0 W b. 9.0 W c. 400 W d. 570 W | | 7. A 500 kVA rated, 200 kg iron-core transformer has a coupling coefficient of 4×10^{-4} and a Steinmetz exponent in t technical manual of 1.6. | the | |--|-----| | What most nearly is the hysteresis loss? a. 0.1 W b. 6.7 W c. 8.2 W d. 10.1 W | | | 8. A transformer rated operating at 60 Hz is rated at 500 kVA. The core is listed in the data sheets as 200 kg iron, with coupling coefficient of 4×10^{-4} and a Steinmetz exponent of 1.6 in a 1.4 T peak magnetic field. The primary voltage 360 kV. The model shows the core resistance as 200 M Ω . | | | What most nearly are the total core losses? ○ a. 180 W ○ b. 595 W ○ c. 600 W ○ d. 650 W | | | 9. A transformer is rated for 34.5 kV. The secondary voltage is measured at no load as 35.02 kV. | | | What is the percent voltage regulation? a. 0.20 % b. 1.4 % c. 1.5 % d. 2.0 % | | | 10. A single-phase transformer rated at 220 V and 0.8 lagging. the primary winding impedance is shown in the data sheet provided as | | | $Z_p = R_p + j X_p = 0.012 + j 0.020 \mathrm{pu}$ | | | What is most nearly the per-unit primary impedance in polar form? a. $0.012 \text{pu} \angle 62^{\circ}$ b. $0.015 \text{pu} \angle 62^{\circ}$ c. $0.02 \text{pu} \angle 62^{\circ}$ d. $0.02 \text{pu} \angle 59^{\circ}$ | | | 11. When voltage or current ratios are given for a three-phase wye connected transformer, they are assumed to specify what conditions? ○ a. line conditions ○ b. phase conditions ○ c. per the given data sheet ○ d. √3 times line conditions | y | | 12. Of the following, which represent the value in a wye connected three-phase transformer? O a. $V_l = V_\phi$ O b. $I_l = \sqrt{3} I_\phi$ O c. $I_l = \sqrt{3} V_\phi$ O d. $I_l = I_\phi$ | | | 13. What of connection does the following represent? | |--| | a. wye b. delta c. zigzag d. open delta | | 14. Three-phase delta transformer can lose a single-phase and still provide% of their rated load. ○ a. 57.7% ○ b. 66.7% ○ c. 68.6% ○ d. 86.6% | | 15. A three-phase transformer has an output of 220 V and a current rating of 30 A. The power factor rating is 0.8 lagging. | | What is most nearly the total power capability of the transformer? ○ a. 1.4 kW ○ b. 5.2 kW ○ c. 6.6 kW ○ d. 9.1 kW | | 16. The type of test that determines the core parameters and the turns ratio is the test. a. rated power b. short-circuit c. open-circuit d. maximum power | | 17. A 13.8 kV single-phase transformer is subjected to an open-circuit test with the following results: | | $P_{\text{in}} = 900 \text{ W}$
$I_{\text{in}} = 0.2 \text{ A}$
$V_{\text{out}} = 460 \text{ V (secondary)}$ | | What is the open-circuit conductance, G ? a. $0.07~\mu S$ b. $0.96~\mu S$ c. $1.96~\mu S$ d. $4.73~\mu S$ | | 18. A 13.8 kV single-phase transformer is subjected to an open-circuit test with the following results: | | $P_{\text{in}} = 900 \text{ W}$
$I_{\text{in}} = 0.2 \text{ A}$
$V_{\text{out}} = 460 \text{ V (secondary)}$ | | What is the reactive power, Q ? | | ○ a. 898 VAR ○ b. 1123 VAR ○ c. 2609 VAR ○ d. 2903 VAR | |---| | 19. A 13.8 kV single-phase transformer is subjected to an open-circuit test with the following results: | | $P_{\text{in}} = 900 \text{ W}$
$I_{\text{in}} = 0.2 \text{ A}$
$V_{\text{out}} = 460 \text{ V (secondary)}$ | | What is most nearly the magnitude of the susceptance, B?
\bigcirc a. 2.0 μ S
\bigcirc b. 4.0 μ S
\bigcirc c. 9.0 μ S
\bigcirc d. 13.7 μ S | | 20. A 13.8 kV single-phase transformer is subjected to an open-circuit test with the following results: | | $P_{\text{in}} = 900 \text{ W}$
$I_{\text{in}} = 0.2 \text{ A}$
$V_{\text{out}} = 460 \text{ V (secondary)}$ | | What is most nearly the turns ratio, a ? O a. 0.03 O b. 0.07 O c. 30 O d. 414 | | 21. A 32 kVA single-phase transformer is rated at 15 kV on the primary. A 60 Hz short-circuit test on the primary resulted in the following reported values. | | $P_{\text{in}} = 1 \text{ kW}$
$I_{\text{in}} = 20 \text{ A}$
$I_s = 100 \text{ A}$
$V_p = 80 \text{ V}$ | | Noting that $I_{\rm in}=I_p=I_{\rm 1sc}$ and $P_{\rm in}=P_{\rm sc}$ will aid in the solution. The transformer is designed for maximum efficiency meaning $R_p=a^2R_s$. | | What is the primary resistance?
\bigcirc a. 0.05 Ω
\bigcirc b. 1.25 Ω
\bigcirc c. 2.25 Ω
\bigcirc d. 2.50 Ω | | 22. A 32 kVA single-phase transformer is rated at 15 kV on the primary. A 60 Hz short-circuit test on the primary resulted in the following reported values. | | $P_{\text{in}} = 1 \text{ kW}$
$I_{\text{in}} = 20 \text{ A}$
$I_{s} = 100 \text{ A}$
$V_{p} = 80 \text{ V}$ | | Noting that $I_{\rm in}=I_p=I_{\rm 1sc}$ and $P_{\rm in}=P_{\rm sc}$ will aid in the solution. The transformer is designed for maximum efficiency meaning $R_p=a^2R_s$. | |--| | What is the turns ratio? | | ○ a. 0.05 | | O b. 0.25 | | O c. 0.5 | | O d. 5 | | 23. A short-circuit test is conducted on a transformer rated at 15 kVA and 1200 primary volts. | | What is the value of the input current, I_{1sc} ? | | O a. 1.25 A | | O b. 11.5 A | | O c. 12.0 A | | O d. 12.5 A | | 24. What two parameters from the ABCD scheme are associated with the output voltage. | | O a. A and B | | O b. A and C | | O c. B and C | | O d. B and D | | 25. What type of transformer is used to control the voltage or phase angle is both? | | ○ a. Distribution | | O b. Instrument | | ○ c. Power | | O d. Regulating | | | | |