Final Exam - DC Circuits

	a. 0.025 A				
	b. 0.003 A				
	c. 0.002 A				
	d. 0.004 A				
2.	The current through a 5 k Ω resistor is 0.1 mA. The voltage drop across the resistor is				
	a. 4 V				
	b. 0.1 V				
	c. 3 V				
	d. 0.5 V				
3.	The voltage drop across a resistor is 0.5 V. The current through the resistor is 0.2 mA. The resistance of the resistor is				
	a. 2500Ω				
	b. 250 Ω				
	c. 1470 Ω				
	d. 3000 Ω				
4.	A $100~\Omega$ resistor has a current of 40 mA running through it. The power dissipated through the resistor is				
	a. 0.08 W				
	b. 0.16 W				
	c. 1 W				
	d. 0.32 W				
5.	The resistor in the problem above is used in a circuit with the same power dissipation. A minimal acceptable power rating for this resistor is				
	a. 0.1 W				
	b. 0.08 W				
	c. 0.2 W				
	d. 0.05 W				
6.	Three resistors are connected in series having values of 150 Ω , 200 Ω , and 350 Ω . The total resistance is				
	a. 700Ω				
	b. 350 Ω				
	c. 200 Ω				
	d. 70Ω				

1. The voltage drop across a 100 ohm resistor is V = 0.2V. The current through the resistor is

- 7. Two resistors are connected in parallel having values of 4.7 k Ω and 10 k Ω . The total resistance is ______.
 - a. $1.47 \text{ k}\Omega$
 - b. $5.17 \text{ k}\Omega$
 - c. $4.70 \text{ k}\Omega$
 - d. $3.20 \text{ k}\Omega$

- 8. The output voltage of the voltage divider shown above is _____
 - a. 20.4 V
 - b. 16.8 V
 - c. 28.0 V
 - d. 12.1 V

- 9. The output voltage, V_1 , of the voltage divider shown above is _____.
 - a. 9.81 V
 - b. 8.87 V
 - c. 10.3 V

d. 7.46 V

10. The output voltage, V₂, of the voltage divider in the previous problem is _____.

- a. 5.13 V
- b. 7.24 V
- c. 5.73 V
- d. 6.58 V

11. The branch current, I₁, in the current divider shown above is _____.

- a. 0.648 A
- b. 0.632 A
- c. 0.732 A
- d. 0.823 A

12. The branch current, I₂, in the current divider in the previous problem is ______.

- a. 0.672 A
- b. 0.468 A
- c. 0.734 A
- d. 0.832 A

13. The branch current, I₁, in the current divider shown above is ______.

- a. 17.3 mA
- b. 16.8 mA
- c. 19.5 mA
- d. 18.7 mA

14. The branch current, I₂, in the current divider in the previous problem is ______.

a. 15.6 mA

- b. 17.8 mA
- c. 12.2 mA
- d. 9.87 mA
- 15. The branch current, I_3 , in the current divider in the previous problem is I_3 .
 - a. 13.3 mA
 - b. 15.2 mA
 - c. 12.7 mA
 - d. 21.3 mA
- 16. Voltage is added when flowing through a source, and subtracted when flowing through a resistor. Conventional current flow is defined as the same direction as _____ charges flow.
 - a. negative
 - b. no
 - c. positive
 - d. all

- 17. For the series circuit shown above, the current I in the circuit is ______.
 - a. 642 μA
 - b. 267 μA
 - c. 481 µA
 - d. 359 µA
- 18. The voltage drop in the 4.7 k Ω resistor in the series circuit in the previous problem is
 - a. 2.73 V
 - b. 1.12 V
 - c. 3.72 V
 - d. 1.69 V
- 19. The voltage drop in the 3.3 $k\Omega$ resistor in the series circuit in the previous problem is
 - a. 1.18 V
 - b. 2.68 V

- c. 0.432 V
- d. 3.12 V
- 20. The voltage drop in the 1.2 k Ω resistor in the series circuit in the previous problem is

- a. 0.213 V
- b. 0.430 V
- c. 1.75 V
- d. 0.127 V

- 21. For the parallel circuit shown above, the current I_1 is ...
 - a. 0.212 A
 - b. 0.416 A
 - c. 0.314 A
 - d. 0.112 A
- 22. For the parallel circuit in the previous problem, the current I_2 is I_2 .
 - a. 0.127 A
 - b. 0.213 A
 - c. 0.0933 A
 - d. 0.372 A
- 23. For the parallel circuit in the previous problem, the current I_3 is \cdot .
 - a. 0.160 A
 - b. 0.153 A
 - c. 0.172 A
 - d. 0.281 A
- 24. For the parallel circuit in the previous problem, the total current I is
 - a. 0.214 A
 - b. 0.576 A
 - c. 0.365 A
 - d. 0.127 A
- 25. For the parallel circuit in the previous problem, the voltage drop across the resistors is

- a. 14 V
- b. 28 V
- c. 32 V
- d. 17 V

26. In the circuit shown above, the current I is ______

- $a. \quad 0.12 \; A$
- b. 0.05 A
- c. 0.17 A
- d. 0.08 A

27. In the circuit in the previous problem, the voltage drop in the 75 Ω resistor is

- a. 6 V
- a. 6 V b. 8 V
- c. 10 V
- d. 12 V

28. In the circuit in the previous problem, the voltage drop in the 150 Ω resistor is

- a. 6 V
- b. 8 V
- c. 12 V
- d. 10 V

29. In the circuit shown above, the current I₁ is ______.

- a. 2.73 mA
- b. 3.67 mA

- c. 0.157 mA
- d. 1.64 mA
- 30. In the circuit in the previous problem, the current I_2 is _____.
 - a. 2.35 mA
 - b. 0.812 mA
 - c. 3.72 mA
 - d. 1.10 mA
- 31. In the circuit in the previous problem, the current I₃ is ______.
 - a. 0.214 mA
 - b. 0.0126 mA
 - c. 0.540 mA
 - d. 0.725 mA

- 32. In the circuit shown above, the mesh current I₁ is _____.
 - a. 0.0155 A
 - b. 0.0286 A
 - c. 0.127 A
 - d. 0.00861 A
- 33. In the circuit in the previous problem, the mesh current I_2 is ______.
 - a. 0.0297 A
 - b. 0.372 A
 - c. 0.218 A
 - d. 0.0183 A

34. In the circuit shown above, the mesh current I₁ is _____

	4.41 mA 2.76 mA			
	8.23 mA			
d.	5.91 mA			
35. In the cir	cuit in the previous p	roblem, the mes	sh current I2 is	·
	8.71 mA			
	1.23 mA			
	5.56 mA 2.42 mA			
a.	2.12 1111			
36. A series	circuit has	path(s) for	current flow.	
	two			
	one			
_	multiple no			
37. A paralle	el circuit has	path(s) f	or current flow	7.
	only one			
	only two			
	multiple no			
u.	110			
38. It is ok to	o dissipate 10 watts of	f power through	a resistor that	is rated for 2 watts.
	False			
b.	True			
39. Power di	ssipation in a resistor		as resistance i	ncreases.
a.	increases			
b .	decreases			
	stays the same			
d.	none of the above			
40. Voltage	equals	times resistanc	ee.	
	voltage			
	resistance			
	power			
d.	current			
41. The equa	tion in the above pro	blem is known a	as	Law.
a.	Tesla's			
	Maxwell's			
c.	Ohm's			

	d.	Faraday's	
42. An ohm is defined as the electrical resistance between two points of a conductor constant potential difference of, applied to these points, produces conductor a current of 1 amp.			
	a.	0 volts	
	b.	1 volt	
	c.	1000 volts	
	d.	2 volts	
43.		to determine the current through a resistor, you must know the resistance as well as across the resistor.	
	a.	voltage	
		capacitance	
		inductance	
	d.	magnetic field strength	
44.	Power is	measured in	
	a.	Watts	
	b.	Ohms	
	c.	Volts	
	d.	Joules	
45.	In order to value.	to find the total resistance in a series circuit, you must each resistor	
	a.	subtract	
	b.	multiply	
		add	
	d.	divide	