

## **Final Exam**

## Continuing Education Course #520 Computer Mathematics

| 1. What number $N$ is $(1001)_2$ in base-10?  a. 9  b. 10  c. 11  d. 17                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. What number $N$ is $(111)_2$ in base-10?  a. 4  b. 5  c. 7  d. 11                                                                                         |
| 3. What number $N$ is $(99)_{10}$ in base-2?  a. $(1100001)_2$ b. $(1100011)_2$ c. $(1100110)_2$ d. $(1110001)_2$                                            |
| 4. What is $(0.15)_2$ in the base-10 system?  a. 2/4  b. 7/4  c. 5/2  d. 6/2                                                                                 |
| 5. What is $(0.15)_{10}$ in base-8 (the octal numbering system) using three significant digits?  a. $(0.112)_8$ b. $(0.113)_8$ c. $(0.114)_8$ d. $(0.117)_8$ |
| 6. What is the bit addition of 1+1?  a. 0 carry 0  b. 0 carry 1  c. 1 carry 0  d. 1 carry 1                                                                  |

7. What is the result of adding following octal numbers?

| $(5)_8 + (6)_8$ $\bigcirc$ a. $(11)_8$ $\bigcirc$ b. $(31)_8$ $\bigcirc$ c. $(33)_8$ $\bigcirc$ d. $(13)_8$                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8. What is $(11)_8$ in the hexadecimal number system?  a. 9  b. 10  c. B  d. C                                                                                                                       |
| 9. What is the number $(16)_{10}$ in the hexadecimal system?  a. A  b. F  c. $(01)_{16}$ d. $(10)_{16}$                                                                                              |
| 10. What is the number $(4E2)_{16}$ in base-10?  a. 1224  b. 1245  c. 1248  d. 1250                                                                                                                  |
| 11. What number is $(5446)_8$ in base 2?  a. $(10110010110)_2$ b. $(100100100110)_2$ c. $(101100001110)_2$ d. $(101100100110)_2$                                                                     |
| 12. What number is (111001011) <sub>2</sub> in the octal numbering system?  ○ a. (317) <sub>8</sub> ○ b. (316) <sub>8</sub> ○ c. (613) <sub>8</sub> ○ d. (713) <sub>8</sub>                          |
| 13. What is $(11111111100010001)_2$ in the hexadecimal numbering system?<br>$\bigcirc$ a. $(FF11)_{16}$<br>$\bigcirc$ b. $(FE01)_{16}$<br>$\bigcirc$ c. $(EF01)_{16}$<br>$\bigcirc$ d. $(FFE1)_{16}$ |
| 14. What is the one's complement of $(110011)_2$ ?  a. $(011100)_2$ b. $(001100)_2$ c. $(101100)_2$ d. $(111111)_2$                                                                                  |

| 15. Simulate the operation of a base-10 machine with four digits per number.  a. 0007  b. 0158  c. 1007  d. 9992                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16. What is the two's complement of $(01110)_2$ on a 4 digit machine?  a. $(0001)_2$ b. $(0010)_2$ c. $(1110)_2$ d. $(0111)_2$                                                                                           |
| 17. What is $(0110)_2$ multiplied by $(0010)_2$ using binary multiplication?  a. $(1100)_2$ b. $(1101)_2$ c. $(1110)_2$ d. $(1111)_2$                                                                                    |
| 18. Division is basically repeated?  a. addition using negatives b. complement addition c. complement subtraction d. subtraction                                                                                         |
| 19. Simulate the operation of a six-digit binary machine. Use one's complements for negative numbers.                                                                                                                    |
| What is the machine representation of $(-17)_{10}$ ?  O a. $(00110)_2$ O b. $(01010)_2$ O c. $(01100)_2$ O d. $(01110)_2$                                                                                                |
| 20. What is the decimal equivalent of $(-15)_{10}$ for the machine using one's complements as negative numbers?<br>$\bigcirc$ a. $(1010)_2$ $\bigcirc$ b. $(0011)_8$ $\bigcirc$ c. $(15)_{10}$ $\bigcirc$ d. $(51)_{10}$ |
| 21. What expression(s) represents the AND function?  O a. $A \cdot B$ O b. $(A) + (B)$ O c. $A + B$ O d. $A/B$                                                                                                           |
| 22. What is the value of the expression $x + \bar{x}$ and what is the name of the law?<br>$\bigcirc$ a. 0 Idempotence $\bigcirc$ b. 1 Idempotence                                                                        |

- O c. 0 Involution
- O d. 1 Complementation
- 23. A function of three variables follows.

$$F = A \cdot (\overline{A} + B)$$

Which of the following is a simplification of the function, F?

- O a. A
- $\bigcirc$  b.  $\overline{A}$
- $\bigcirc$  c.  $A \cdot B$
- $\bigcirc$  d. A + B
- 24. Consider the following expression.

$$B \cdot (A + C)$$

Which of the following expressions is equivalent and which law is used in the expansion?

- $\bigcirc$  a.  $(B+A)\cdot(B+C)$
- $\bigcirc$  b.  $(B \cdot A) + (B \cdot C)$
- $\bigcirc$  c.  $(B \cdot A) \cdot (B \cdot C)$
- $\bigcirc$  d.  $(B \cdot A) + (B \cdot C)$
- 25. Consider the following expression.

$$\overline{(x+y+z+\ldots)}=\bar{x}\bar{y}\bar{z}\ldots$$

Which of the following law is represented by the expression?

- O a. Associative
- O b. Complementation
- O c. DeMorgan
- O d. Special Properties