Final Exam ## Continuing Education Course #520 Computer Mathematics | 1. What number N is $(1001)_2$ in base-10? a. 9 b. 10 c. 11 d. 17 | |--| | 2. What number N is $(111)_2$ in base-10? a. 4 b. 5 c. 7 d. 11 | | 3. What number N is $(99)_{10}$ in base-2? a. $(1100001)_2$ b. $(1100011)_2$ c. $(1100110)_2$ d. $(1110001)_2$ | | 4. What is $(0.15)_2$ in the base-10 system? a. 2/4 b. 7/4 c. 5/2 d. 6/2 | | 5. What is $(0.15)_{10}$ in base-8 (the octal numbering system) using three significant digits? a. $(0.112)_8$ b. $(0.113)_8$ c. $(0.114)_8$ d. $(0.117)_8$ | | 6. What is the bit addition of 1+1? a. 0 carry 0 b. 0 carry 1 c. 1 carry 0 d. 1 carry 1 | 7. What is the result of adding following octal numbers? | $(5)_8 + (6)_8$ \bigcirc a. $(11)_8$ \bigcirc b. $(31)_8$ \bigcirc c. $(33)_8$ \bigcirc d. $(13)_8$ | |--| | 8. What is $(11)_8$ in the hexadecimal number system? a. 9 b. 10 c. B d. C | | 9. What is the number $(16)_{10}$ in the hexadecimal system? a. A b. F c. $(01)_{16}$ d. $(10)_{16}$ | | 10. What is the number $(4E2)_{16}$ in base-10? a. 1224 b. 1245 c. 1248 d. 1250 | | 11. What number is $(5446)_8$ in base 2? a. $(10110010110)_2$ b. $(100100100110)_2$ c. $(101100001110)_2$ d. $(101100100110)_2$ | | 12. What number is (111001011) ₂ in the octal numbering system? ○ a. (317) ₈ ○ b. (316) ₈ ○ c. (613) ₈ ○ d. (713) ₈ | | 13. What is $(11111111100010001)_2$ in the hexadecimal numbering system?
\bigcirc a. $(FF11)_{16}$
\bigcirc b. $(FE01)_{16}$
\bigcirc c. $(EF01)_{16}$
\bigcirc d. $(FFE1)_{16}$ | | 14. What is the one's complement of $(110011)_2$? a. $(011100)_2$ b. $(001100)_2$ c. $(101100)_2$ d. $(111111)_2$ | | 15. Simulate the operation of a base-10 machine with four digits per number. a. 0007 b. 0158 c. 1007 d. 9992 | |--| | 16. What is the two's complement of $(01110)_2$ on a 4 digit machine? a. $(0001)_2$ b. $(0010)_2$ c. $(1110)_2$ d. $(0111)_2$ | | 17. What is $(0110)_2$ multiplied by $(0010)_2$ using binary multiplication? a. $(1100)_2$ b. $(1101)_2$ c. $(1110)_2$ d. $(1111)_2$ | | 18. Division is basically repeated? a. addition using negatives b. complement addition c. complement subtraction d. subtraction | | 19. Simulate the operation of a six-digit binary machine. Use one's complements for negative numbers. | | What is the machine representation of $(-17)_{10}$? O a. $(00110)_2$ O b. $(01010)_2$ O c. $(01100)_2$ O d. $(01110)_2$ | | 20. What is the decimal equivalent of $(-15)_{10}$ for the machine using one's complements as negative numbers?
\bigcirc a. $(1010)_2$ \bigcirc b. $(0011)_8$ \bigcirc c. $(15)_{10}$ \bigcirc d. $(51)_{10}$ | | 21. What expression(s) represents the AND function? O a. $A \cdot B$ O b. $(A) + (B)$ O c. $A + B$ O d. A/B | | 22. What is the value of the expression $x + \bar{x}$ and what is the name of the law?
\bigcirc a. 0 Idempotence \bigcirc b. 1 Idempotence | - O c. 0 Involution - O d. 1 Complementation - 23. A function of three variables follows. $$F = A \cdot (\overline{A} + B)$$ Which of the following is a simplification of the function, F? - O a. A - \bigcirc b. \overline{A} - \bigcirc c. $A \cdot B$ - \bigcirc d. A + B - 24. Consider the following expression. $$B \cdot (A + C)$$ Which of the following expressions is equivalent and which law is used in the expansion? - \bigcirc a. $(B+A)\cdot(B+C)$ - \bigcirc b. $(B \cdot A) + (B \cdot C)$ - \bigcirc c. $(B \cdot A) \cdot (B \cdot C)$ - \bigcirc d. $(B \cdot A) + (B \cdot C)$ - 25. Consider the following expression. $$\overline{(x+y+z+\ldots)}=\bar{x}\bar{y}\bar{z}\ldots$$ Which of the following law is represented by the expression? - O a. Associative - O b. Complementation - O c. DeMorgan - O d. Special Properties