

Final Exam

AC Electrical 101+

Part II: Concepts & Three-Phase Electricity

 Which of the following is (are) NOT a property of three-phase energy distribution systems. a. fewer and smaller conductors than multiple single phase b. induction motors do not require additional starting windings c. motors generate a pulsating torque d. three-phase currents tend to cancel each other 	
 2. Which of the following is technically not a phasor? a. I b. V c. VI d. Z 	
 3. Which of the following represents the "high" or positive polarity? a. arrow tail b. convention c. positive sign d. second letter of double subscript 	
4. If the maximum sinusoidal voltage is 167.7, what is the rms voltage? a. 115 V b. 120 V c. 220 V d. 240 V	
5. What part of the following formula represents the rotating portion of the quantity?	
$v(t) = \operatorname{Re}\left(\left(\frac{169.7}{\sqrt{2}}\right) e^{j30^{\circ}} e^{j\omega t}\right)$ \bigcirc a. $e^{j\omega t}$ \bigcirc b. $e^{j30^{\circ}}$ \bigcirc c. Im \bigcirc d. Re	
6. A three-phase 208 V (rms) system supplies heating elements connected in a wye configuration. What is the resistance of each element if the total balanced load is 3 kW? \bigcirc a. 4.42 Ω \bigcirc b. 14.42 Ω \bigcirc c. 144.00 Ω \bigcirc d. 1440.00 Ω	

7. A three-phase system has a balanced delta load of 5000 kW at 84% power factor. If the line voltage is 4160 V (rms), what is the line current? O a. 826 A O b. 941 A O c. 1000 A O d. 1426 A
8. A 120 V (per phase, rms) three-phase system has a balanced load consisting of three 10 Ω resistances. What total power is dissipated if the connection is a delta configuration? O a. 12 W D b. 36 W C c. 1440 W d. 4320 W
9. A 120 V (per phase, rms) three-phase system has a balanced load consisting of three 10 Ω resistances. What total power is dissipated if the connection is a wye configuration? O a. 12 W D b. 36 W C c. 1440 W d. 4320 W
10. A balanced delta load consists of three 20 $\Omega \angle 25^\circ$ impedances. The 60 Hz line voltage is 208 V (rms). What is the phase current? O a. $10.4 \text{ A} \angle +25^\circ$ O b. $10.4 \text{ A} \angle -25^\circ$ O c. $6.4 \text{ A} \angle -25^\circ$ O d. $12.8 \text{ A} \angle -25^\circ$
11. A balanced delta load consists of three 20 $\Omega \angle 25^\circ$ impedances. The 60 Hz line voltage is 208 V (rms). What is the magnitude of line current? O a. 3 O b. 10 A O c. 18 A O d. 54 A
12. A balanced delta load consists of three 20 $\Omega \angle 25^\circ$ impedances. The 60 Hz line voltage is 208 V (rms). What is the magnitude of the phase voltage? O a. 60 V D b. 120 V c. 208 V d. 240 V
13. Three identical impedances are connected in delta across a three-phase system with 240 V (rms) line voltages in an ABC sequence. What is the approximate phase impedance angle?

transformation?

- \bigcirc a. 0.2
- O b. 2
- O c. 6
- O d. 7

20. Consider the one-line diagram of a three-phase distribution system. What is most nearly the generator base voltage?

- O a. 505 V
- O b. 4092 V
- O c. 7080 V
- O d. 12,250 V